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Interrupt-mode RDMA wastes the low 
latency of NICs



Emergence of Microsecond Events

LUIZ BARROSO, MIKE MARTY, DAVID PATTERSON, AND PARTHASARATHY RANGANATHAN, 
Attack of the Killer Microseconds, Communications of the ACM, 2017.



Why microsecond-scale latencies are hard to hide

CPU Instruction Pipeline OS Process Scheduling

• Nanosecond-scale latencies can be hidden 
by CPU out-of-order execution pipeline.

• Example: DRAM access takes 50~100 ns, 
where the CPU core can execute 
independent instructions after the DRAM 
access.

• CPU out-of-order pipeline only supports 
hundreds of instructions, so microsecond-
scale latencies would stall the pipeline and 
decrease the efficiency of CPU.

• OS process scheduling is designed to hide 
millisecond-scale latencies.

• Context switching to another process takes 3~5us.
• RDMA Read takes only 2~3us.
• If we context switch to another process after 

sending the RDMA Read request, and switch back 
after receiving the RDMA response, then the CPU is 
wasted on process scheduling.
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Why interrupt-mode RDMA has high latency?

RDMA NIC

App Thread

C
Q
1

Kernel

E
Q

interrupt

Interrupt 
handler

Context switch

①

②③

④

⑨

Tasklet Scheduler⑤

⑧

Inter-Processor 
Interrupt⑥

⑦

• CQ: Completion Queue.
• Each CQ has a completion vector, which 

determines the CPU cores to deliver interrupts
• EQ: Event Queue for interrupt notification.

• A completion vector corresponds to an EQ in 
kernel-mode host memory.

• EQ entries contain CQ numbers to notify.

• ①②③ NIC: 1.5 us
• ④⑤⑦ kernel (same core): 2.2 us
• ④⑤⑥⑦ kernel (different cores): 6.9 us
• ⑧ context switch: 0.3 us



Key Observation 1
• Direct context switch is much faster than process scheduling.
• Mutex and semaphore are IPC primitives provided by the kernel that 

achieves context switch by process scheduling.
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while (true) {
sched_yield();

}

while (true) {
sched_yield();

}
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while (true) {
lock(&g_mutex);
unlock(&g_mutex);

}

Thread 1 Thread 2

Kernel (thread scheduling)

while (true) {
lock(&g_mutex);
unlock(&g_mutex);

}



Approach 1: per-core dispatcher thread
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The CQ is mapped to both application thread and a 
per-core dispatcher thread.

1. NIC sends CQE to the CQ.
2. Dispatcher thread polls all CQs on the core and 

peeks CQE from the CQ, but do not pop it out 
of CQ.

3. Dispatcher thread context switches to the 
application thread directly.

4. The application thread pops the CQE out of CQ.
5. When the application waits on the next event, it 

context switches back to the dispatcher thread.
⑤



How to implement direct context switch?

• Linux does not support context switching to a specific thread.
• We introduce a new system call switch_to(pid)

• Simply checks the permission and puts the thread pid to the head of runqueue.
• Performance: 0.3~0.4 us.

• Security:
• To avoid switch_to(pid) being abused to starve other threads, we only allow non-

dispatcher threads to switch to dispatcher threads and only allow dispatcher threads to 
switch to non-dispatcher threads.
• We introduce a flag bit in the process control block to indicate whether it is a dispatcher thread.

• Limitations:
• Direct context switch makes application threads have high priority than other threads 

with the same priority. However, because each priority has its own runqueue, threads 
with higher priority still takes precedence.



Key Observation 2

• Interrupt delivery to a thread running on the same core is much 
faster than other cores.
• Reason: inter-processor interrupts (IPI) to wake up another core.



Approach 2: interrupt core affinity & 
shorten kernel path
• How to make sure interrupts and the thread are on the same core?

CQ1

CQ3

Thread 1

Thread 3

EQ1
create_cq(..., comp_vector=1)

create_cq(..., comp_vector=2)

Thread 2 CQ2
Core 1

Core 2

create_cq(..., comp_vector=1)

CQ4Thread 4

create_cq(..., comp_vector=2)

EQ2

RDMA
NIC

EQEs including 
CQ numbers

EQEs including 
CQ numbers

MSIX 
interrupt

Completion vectors

Core 1
ISR

Core 2
ISR

Wake up threads

Wake up threads



Approach 2: interrupt core affinity & 
shorten kernel path
• What if the creator of the CQ and the user of the CQ are in 

different threads and on different cores?
• What if a thread migrates to another core?
• We need to dynamically update the affinity between CQs and EQs.

• We leverage a feature in Mellanox NICs: CQ-to-EQ remapping.
• The remapping is done lazily when the interrupt handler finds the 

thread to wake up is not on the same core.



Approach 2: interrupt core affinity & 
shorten kernel path
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Approach 2: interrupt core affinity & 
shorten kernel path
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Compared to traditional interrupt delivery path:
1. Remove tasklet and handle interrupts in top half.

• Top-half cannot use locks and dynamically allocated 
memory that may lead to sleep, so we remove them.

2. Directly put the thread to wake up at the head of 
the runqueue, bypassing the kernel scheduler.

3. Other minor optimizations (see the paper).



FastWake system architecture
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• Compatible with existing RDMA 
applications.
• Only need an LD_PRELOAD library 

as a shim layer.
• Compatible with existing OS.

• Update OFED kernel modules to 
shorten thread wake-up path and 
implement CQ-to-EQ remapping.

• Add a switch_to(pid) system call for 
direct context switch.

• Compatible with existing RDMA NIC 
hardware.



Evaluation – Latency (x86)

Dispatcher approach: reduce RDMA latency by 65%~83% on x86 at the cost of high power utilization.
Interrupt approach: reduce RDMA latency by 26%~64% on x86.



Evaluation – Latency (ARM)

Dispatcher approach: reduce RDMA latency by 64%~78% on ARM at the cost of high power utilization.
Interrupt approach: reduce RDMA latency by 25%~54% on ARM.



Comparing dispatcher and interrupt approaches 
of FastWake



FastWake can also reduce IPC latency

IPC = Inter-Process 
Communication



Conclusion
• Data center networking and storage hardware are entering an age of 

microsecond-scale latency.
• Current CPU hardware and OS cannot hide this latency.

• FastWake proposes two approaches with commodity NIC, OS and 
applications:
• Observation 1 – context switch is much faster than process scheduling.

• Solution 1 – build a per-core dispatcher thread and fast context switch to fully remove 
the interrupt overheads.
• Reduce RDMA latency by 65%~83% on x86 and 64%~78% on ARM.
• Only 0.4us (20%) higher than polling mode.

• Observation 2 – interrupt core affinity is crucial for performance.
• Solution 2 – a power-saving approach to reduce interrupt latency by ensuring interrupt 

core affinity and shortening kernel path.
• Reduce RDMA latency by 26%~64% on x86 and 25%~54% on ARM.

• We expect future work to evaluate FastWake on real applications.
• “The Killer Microseconds” is still an open problem.
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