
Optimizing the Memory Hierarchy by
Compositing Automatic Transformations on

Computations and Data
Jie Zhao

State Key Laboratory of Mathematical Engineering
and Advanced Computing, Zhengzhou, China

jie.zhao@inria.fr

Peng Di
Huawei Technologies Co. ,Ltd.

Beijing, China
dipeng1982@gmail.com

Abstract—Optimizing compilers exploit the memory hierarchy
using loop tiling and fusion, but these two transformations usually
interfere with each other due to the oversight of transformations
on data in memories. We present a novel composition of loop
tiling and fusion in this paper. Unlike existing tiling-after-
fusion algorithms that only transform computation spaces, our
approach first applies rectangular/parallelogram tiling to live-out
computation spaces for fitting the memory hierarchy, followed
by the computation of the memory footprints required by each
tile. The upwards exposed data extracted from the memory
footprints are used to determine the tile shapes of intermediate
computation spaces, allowing the construction of arbitrary tile
shapes. Finally, our technique implements a post-tiling fusion
strategy for maximizing data locality without losing tilability
or parallelism of live-out computation spaces, thereby enabling
storage reduction and reuse, and optimizing the memory hier-
archy. We demonstrate that our approach can achieve superior
performance on both CPU and GPU architectures over the state
of the art by experimenting on 11 benchmarks extracted from
numerous domains including neural networks, image processing,
sparse matrix computation and linear algebra. Also, the results
of the ResNet-50 model on an AI accelerator show that our
approach can obtain 16% performance improvement.

Index Terms—memory hierarchy, data locality, parallelism,
polyhedral model, tiling, fusion

I. INTRODUCTION

The memory hierarchy on modern heterogeneous archi-
tectures provides the programmer the illusion of unlimited,
fastest memories, but it also complicates the programming
issue, which is worsened by the diversity of domain-specific
accelerators. Researchers from the compiler community have
devised loop fusion [29], [38] and tiling [27], [58] to optimize
the memory hierarchy. Loop tiling is a transformation that
groups iterations of loop nests into smaller blocks, maximizing
reuse along multiple loop dimensions when the block fits in
registers or caches. Loop fusion is a technique that interwines
two or more loop nests while maintaining the producer-
consumer relations between these loop nests, allowing more
values to be allocated in faster memory and thereby enabling
storage reduction.

The compositions of these two loop transformations have
been proved effective in many application domains [2], [6],

[31], [32], [55], [61]. However, an optimizing compiler usu-
ally has to model tradeoffs between tilability/parallelism and
locality. Worse yet, the complicated computation patterns like
stencils and reductions presented frequently in applications
from the domain of neural networks [13], [54] and image pro-
cessing [41], [48] call for complex tiling techniques involving
overlapped memory footprints between tiles [33], [41], [48],
leading to the inefficient use of the memory hierarchy.

The polyhedral model is recognized for its powerful ability
to composite affine loop transformations and has been inte-
grated into numerous general-purpose optimizers [11], [21],
[57] or domain-specific frameworks [6], [16], [41], [54], [59].
Typically, the model assigns a lexicographical execution date
[17], [18] to each instance of the operations in programs,
and schedules a new execution date by fully considering
parallelism and locality. The algorithms used for computing
a new lexicographical execution order are referred to as
polyhedral schedulers, which are usually integrated with cost-
model-based heuristics for implementing loop fusion. Loop
tiling is usually implemented by expanding the dimensions
of computation spaces produced from the schedulers, which
implies a particular order on fusion and tiling.

Yet integrating fusion heuristics with polyhedral schedulers
poses some challenges to the model. First, the fusion heuristics
may heavily impact the tilability, parallelism and locality of
programs. While an aggressive fusion strategy mitigates data
movements between hierarchical memories at the expense
of losing tilability and/or parallelism, a conservative strategy
maximizes tiling possibilities by transferring data through
lower-level caches or off-chip communications. Second, con-
structing complex tile shapes after fusion is not straightfor-
ward, since either post-pass rescheduling is required [41],
which may introduce over-approximated memory footprints
and therefore lead to performance degradation, or non-affine
semantics have to be modeled [60], which optimize overlapped
tiling without considering the producer-consumer locality.
Finally, an aggressive fusion heuristic may also worsen the
time complexity of polyhedral compilation.

In this paper, we do not resort to aggressive fusion heuristics
before implementing tiling, but optimize the memory hierarchy

427

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00044



by reordering the sequence of loop fusion and tiling. Derived
from a simple heuristic, our approach only applies tiling to
live-out computation spaces1, which tightens the scheduling
space of polyhedral schedulers and therefore reduces time
complexity. The technique continues by computing the mem-
ory footprints required by each tile of live-out computation
spaces, using elementary combinations of the operations on
affine sets and maps. The upwards exposed data, i.e., those
data used within tiled live-out computation spaces but de-
fined in others, are extracted from the memory footprints
without resorting to post-pass rescheduling algorithms nor
compositing with non-affine semantics. The tile shapes of
those computation spaces that produce intermediate values are
then determined by compositing such upwards exposed data
with access relations, allowing the construction of arbitrary
tile shapes without additional efforts. Finally, we introduce a
post-tiling fusion algorithm by leveraging a well-defined poly-
hedral representation [22], without changing the parallelism or
tilability of live-out computation spaces.

Our approach models the composition of tiling and fusion
in the absence of tradeoffs between parallelism, locality and
recomputation that have to be faced by both domain-specific
frameworks [13], [48], [54] and polyhedral optimizers [11],
[21], [41], [57], [60], maximizing the utilization of the memory
hierarchy on modern architectures. The extension to the well-
defined polyhedral representation [22] also strengths the power
of polyhedral compilation by facilitating post-tiling fusion.
Moreover, the algorithm presented in this work also moderates
compilation time without restricting to special cases [52] or
relaxing scheduling constraints [2].

We conduct experiments on 11 benchmarks covering ap-
plication domains like neural networks, image processing,
sparse matrix computation and linear algebra, validating the
effectiveness of our technique by targeting both general-
purpose processors and domain-specific accelerators. The ex-
perimental results demonstrate the general applicability of our
approach and its portability to different architectures. We also
demonstrate that our approach can achieve significant compile-
time improvement over existing fusion heuristics.

The paper is organized as follows. Section II introduces
the background of this work and our motivation. Section III
presents our technique for constructing arbitrary tile shapes,
and Section IV describes the post-tiling fusion algorithm.
Section V explains the code generation strategy used by our
approach, followed by the experimental results described in
Section VI and related work discussed in Section VII. Finally,
the conclusion is presented in Section VIII.

II. BACKGROUND AND MOTIVATION

We now present the background knowledge of polyhedral
compilation and illustrate our motivation.

1A live-out computation space writes to memory locations that will be
referenced after the computation of a program.

A. Tiling and Fusion in the Polyhedral Model

The polyhedral model is a mathematical abstraction for
automatic parallelization and locality optimization. It repre-
sents a program using iteration domains, access relations,
dependences and schedules. Typically, the polyhedral model
uses schedules to represent both the original lexicographical
order of a program and one that is generated by a scheduling
algorithm. A schedule is an affine function over all statement
instances, i.e., iteration domains. A scheduling algorithm has
to respect the dependences relating statement instances that
depend on each other, which are in turn computed on the
basis of access relations. An access relation is an affine map
between statement instances and memory locations.

Consider the loop nests of a 2-dimensional convolution
over an input image A using kernel B in Fig. 1(a), with
C representing the output image. Statement S1 represents
the initialization and statement S2 performs the reduction.
Statement S0 can be viewed as a quantization step and state-
ment S3 performs a “ReLU” operation. Using the polyhedral
model, the initial schedule can be expressed using a multi-
dimensional affine schedule as [S0(h,w) → (0, h, w);S1(h,w) →

(1, h, w, 0);S2(h,w, kh, kw)→ (1, h, w, 1, kh, kw);S3(h,w)→ (2, h, w)].
The polyhedral model can compute a new, tiling-friendly

schedule by integrating with different fusion heuristics.
With a conservative fusion heuristic, the new sched-
ule can be expressed as [S0(h,w) → (0, h, w);S1(h,w) →

(1, h, w, 0, 0, 0);S2(h,w, kh, kw) → (1, h, w, kh, kw, 1);S3(h,w) →

(1, h, w,KH − 1, KW − 1, 2)], and we use ({S0}, {S1, S2, S3}) to
represent the fusion result. One can now apply rectangular
tiling using tile sizes T0×T1 to the first group {S0} and T2×T3

to the second group {S1, S2, S3}, with the tiled code shown on
the left of Fig. 1(b). We use ht,wt to represent the tile loops
(iterating among tiles) and hp,wp the point loops (iterating
within a tile) after loop tiling. Note that tile sizes have to be
fixed integer values, but we use symbolic tile sizes throughout
the paper to better explain the generality of our work.

The cost model of such a conservative heuristic is to
maximize fusion without sacrificing the parallelism of the
fused loops. When targeting CPUs, the compiler can add
OpenMP pragmas before each group as shown in Fig. 1(b).
While the tiled OpenMP code benefits from the maximal
parallelism preserved by this fusion heuristic, tensor A cannot
be allocated on small scratchpads but has to be stored as full
buffers. When targeting GPUs, the polyhedral model generates
CUDA code by mapping the parallel loops to the two-level
hardware parallelism on GPUs. The GPU mapping strategy
enabled by the model is shown on the right of Fig. 1(b), with
the tile loops ht,wt mapped to thread blocks (red arrows) and
the point loops hp,wp to threads (blue arrows). However, tensor
A cannot be allocated on the shared memory.

On the contrary, an aggressive heuristic maximizes data
locality by fusing all statements through the combination of
loop interchange, shifting and skewing, with the generated
code shown in Fig. 1(c). While this policy maximizes the
producer-consumer locality, it also reduces the number of

428



for(h=0;h<H;h++)
for(w=0;w<W;w++)
A[h][w]=
Quant(A[h][w]); /* S0 */

for(h=0;h<=H-KH;h++)
for(w=0;w<=W-KW;w++){
C[h][w]=0; /* S1 */
for(kh=0;kh<KH;kh++)
for(kw=0;kw<KW;kw++)
C[h][w]+=
A[h+kh][w+kw]

*B[kh][kw]; /* S2 */
}

for(h=0;h<=H-KH;h++)
for(w=0;w<=W-KW;w++)
C[h][w]=
ReLU(C[h][w]); /* S3 */

(a) The loop nests

b0

b1

Grid

Block(0,1) Block(1,1) Block(2,1)

Block(0,0) Block(1,0) Block(2,0)

t0

t1

Block(1,1)

Thread(0,1) Thread(1,1)

Thread(0,1) Thread(1,0)

#pragma omp parallel for
for(ht=0;ht<H/T0;ht+=T0)
for(wt=0;wt<W/T1;wt+=W/T1)

for(hp=0;hp<T0;hp++)
for(wp=0;wp<T1;wp++)
S0(ht+h,wt+wp);

#pragma omp parallel for
for(ht=0;ht<(H-KH)/T2;ht+=T2)
for(wt=0;wt<(W-KW)/T3;wt+=W/T3)

for(hp=0;hp<T2;hp++)

for(wp=0;wp<T3;wp++){
S1(ht+h,wt+wp);

for(kh=0;kh<=H-KH;kh++)
for(kw=0;kw<=W-KW;kw++)
S2(ht+h,wt+wp,kh,kw);

S3(ht+h,wt+wp);

}

kernel0

kernel1

(b) The code and GPU mapping of a conservative fusion heuristic

/* (1) c0,c1 are not parallelizable, nor tilable.
(2) c0,c1 cannot be mapped to GPU grid.
(3) if conditionals expand the code size.

and make tiling difficult. */
for(c0=0;c0<H;c0++)
for(c1=0;c1<W;c1++){
if(c0<=H-KW && c1<=W-KW)
S1(c0,c1);

if(c1>KW){
if(c0<KH-1)
S0(c0,c1);

for(c2=max(KH-1,c0);c2<min(H,c0+KH);c2++){
for(c3=0;c3<KW;c3++){
S2(c2-KH+1,c1-KW+1,c0-c2+KH-1,c3);
if(c2==c0 && c3==KW-2)
S0(c0,c1);

}
if(c0<H-1 && c1<W-1 && c2==c0)
S3(c0-KH+1,c1-KW+1);

}
}
else
S0(c0,c1);

}

(c) The code of an aggressive fusion heuristic

Fig. 1: A 2D convolution with its fusion results

tilable dimensions and loses the outer parallelism. The inter-
change transformation applied by the polyhedral model also
results in another problem: the dimensions of the fused loop
nests mismatch with the tile sizes specified by users due to the
permutation of dimensions, especially in the case of domain-
specific frameworks for neural networks.

We therefore argue that the tiling-after-fusion strategy in
existing polyhedral optimizers cannot fully exploit the memory
hierarchy and intend to take another way to avoid such
tradeoffs between tilability/parallelism and locality by reorder-
ing the sequence of tiling and fusion. To implement this
reordering, we choose to leverage schedule trees [22].

B. Schedule Trees

The polyhedral model uses multi-dimensional affine sched-
ules for representing the lexicographical order of a program,
but this representation cannot be easily extended to automate
memory managements on GPUs, e.g., the automatic inser-
tion of thread-level synchronizations for CUDA code. Affine
schedules can be explicitly encoded using a tree structure [22],
which can simplify the modeling of automatic memory man-
agements in polyhedral compilers.

Building an initial schedule tree for a program on the basis
of a multi-dimensional affine schedule is straightforward. A
schedule tree starts with a so-called domain node containing
all statement instances, i.e., iteration domains, expressed using
Presburger formulas [46]. A sequence node is introduced
to explicitly express the scalar dimensions used in multi-
dimensional affine schedules, defining a particular order on its
children. Each child of a sequence node has to be a filter node,
which collects a subset of statement instances introduced by
its outer domain or filter node. A band node is used to encode
the variable and/or constant dimensions of multi-dimensional
affine schedules, in the form of a piecewise multi-dimensional
affine function over the iteration domain. The polyhedral code
generators like [8], [22], [53] take as input the iteration domain
and the new schedule produced from the polyhedral model for
generating imperative code. The schedule tree representation
uses band nodes and sequence nodes for encoding the clas-

sical multi-dimensional affine schedules, but also introduces
a domain node to represent the iteration domain. Encoding
iteration domains and schedules together makes it possible to
generate code by only scanning schedule trees.

Taking Fig. 1(a) as an example, it is easy to obtain its initial
schedule tree representation, depicted in Fig. 2(a). The domain
node can be expressed using a Presburger set {S0(h,w) : 0 ≤

h < H ∧ 0 ≤ w < W ;S1(h,w) : 0 ≤ h ≤ H − KH ∧ 0 ≤ w ≤ W −

KW ;S2(h,w, kh, kw) : 0 ≤ h ≤ H − KH ∧ 0 ≤ w ≤ W − KW ∧ 0 ≤

kh < KH ∧ 0 ≤ kw < KW ;S3(h,w) : 0 ≤ h ≤ H − KH ∧ 0 ≤

w ≤ W − KW}, which is omitted for the sake of conciseness.
An initial schedule tree can be automatically transformed into
a new one, with the information about the parallelism and
tilability of the loop nest attached in band nodes, as shown in
Fig. 2(b) (the attached information is not shown).

domain

sequence

{S0}

[S0(h,w) → (h,w)]

{S1;S2}

[{S1(h,w) → (h,w);S2(h,w, kh, kw) → (h,w)}]

sequence

{S1} {S2}

[{S2(h,w, kh, kw) → (kh, kw)}]

{S3}

[S3(h,w) → (h,w)]

(a) The initial schedule tree
domain

sequence

{S0}

band0

{S1;S2;S3}

band1

sequence

{S1} {S2}

[{S2(h,w, kh, kw) → (kh, kw)}]

{S3}

(b) The schedule tree after fusion

Fig. 2: Schedule trees of the code in Fig. 1(a)

A band node is used to represent a loop nest, and the
attached information is used to guide the compiler to apply
transformations. The content of the band node band0 is an

429



affine function [{S0(h,w)→ (h,w)}] attached with two attributes,
a boolean value permutable and a vector coincident, where
permutable is used to indicate whether the loop nest is tilable,
and each component of coincident is used for expressing
the parallelism of a single loop (1 for parallelizable and 0
otherwise). In Fig. 2(b), permutable is 1 and coincident should
be [1, 1] for band0. band1 can be written as [{S1(h,w) →

(h,w);S2(h,w, kh, kw) → (h,w);S3(h,w) → (h,w)}], with the at-
tributes represented as 1 and [1, 1]. It means the two loop
nests in Fig. 2(b) are both tilable and possess 2D parallelism.

We only present the node types that will be used throughout
this work. The readers are invited to refer to the work of
Grosser et. al [22] for a detailed description of schedule trees.
In particular, we introduce the extension node that defines an
affine function over its outer schedule dimensions to statement
instances or array/scalar elements. An extension node can be
used to automate memory managements by retaining itself to a
suitable position in schedule trees. We will leverage extension
nodes to implement our post-tiling fusion algorithm.

III. CONSTRUCTING TILE SHAPES

The drawback of a conservative fusion heuristic is that it
may result in different tile shapes on the separated computation
spaces it produces, which may lead to the mismatch of
memory footprints required by these computation spaces.

Still consider the example shown in Fig. 1(a) which is
composed of three loop nests. For the sake of clarity, we
assume H = W = 6 and KH = KW = 3. A fusion strategy
({S0}, {S1, S2, S3}) obtained by a conservative heuristic results
in two groups for the example, as shown in Fig. 1(b). A follow-
up rectangular tiling can be applied using a piecewise affine
relation:
[{S0(h,w)→ (h/T0, w/T1, h, w)}, {S1(h,w)→ (h/T2, w/T3, h, w);

S2(h,w, kh, kw)→ (h/T2, w/T3, h, w, kh, kw);

S3(h,w)→ (h/T2, w/T3, h, w)}]
(1)

which tiles the first group with tile sizes T0×T1 and the second
with T2 × T3. Each piece of the affine relation (1) represents
a tiling schedule, expressed within a pair of braces. We use
tiling schedules to refer to such piecewise affine relations.

The polyhedral model constructs one computation space for
each fusion group. We use a quantization space to refer to
the first group and a reduction space the second. The tiled
computation spaces are shown at the bottom of Fig. 3 when
given tiles sizes T0 = T1 = 4 and T2 = T3 = 2. The quantization
space is separated into four blocks, with one full tile (the
yellow tile) and three partial tiles. The reduction space is
composed of four full tiles. Full tiles are entirely covered by
the computation space; partial tiles are on the boundaries of a
computation space and interleave with the later [30].

There exists a dependence caused by tensor A between the
two computation spaces, which is written by S0 and read by
S2. We show the data space of tensor A on the top of Fig. 3.
Let us focus on the red tiles in both computation spaces. The
access relations between each red tile and tensor A are repre-
sented using dotted lines and dashed lines respectively. While
the red tile of the quantization space writes to 4 points of

tensor A, the red tile of the reduction space requires 16 points.
The conflict between the memory footprints requires a gather-
scatter communication of tenor A between two computation
spaces, which prevents the fusion of the two red tiles.

Such conflict is due to the tiling-after-fusion strategy imple-
mented in existing polyhedral compilation frameworks without
considering the transformations on data spaces. If we only
apply loop tiling to the reduction space, one can obtain the
memory footprints of tensor A required by each tile of the
reduction space, which can then be used to determine the tile
shapes of the quantization space in conjunction with the access
relation between S0 and tensor A. The tiles with the same
color from different computation spaces can be fused as the
mismatch of memory footprints does not exist. Constructing
the tile shape of the quantization space by taking into account
the transformations on the data space can also reduce the
magnitude of the tile size space, since users only need to
specify the tile sizes for the reduction space.

w

h

reduction space

w

h

data space of tensor A

w

h

quantization space

Fig. 3: Tiling computation
spaces individually

w

h

red
uc

tio
n sp

ac
e w

h

da
ta

sp
ac

e of
A

w

h

qu
an

tiz
ati

on
sp

ac
e

Fig. 4: Constructing tile
shapes via upwards ex-
posed data

We thus first use a conservative fusion heuristic to enforce
separated computation spaces by setting a proper compilation
option provided by isl [56], an integer set library used by most
polyhedral tools [11], [41], [54], [57] for making decisions on
loop fusion. The next step is to apply rectangular/parallelo-
gram tiling only to the live-out computation spaces, which
will be used to compute the memory footprints.

A. Extracting Upwards Exposed Data

The data accessed within the reduction space can be divided
into read and write accesses. We use upwards exposed data to
refer to those data read by the reduction space but defined in
the quantization space. One can easily construct the relation
between the computation tiles and the upwards exposed data
by assembling the dependence relations and the read access
relation of the reduction space. The data space of tensor A is
depicted in the middle of Fig. 4, with each data tile represented
using the same color with its corresponding computation tile
in the reduction space.

Let us go through the deduction in the example. We only
discuss statement S2 that reads tensor A in the reduction space
for the sake of simplicity. The tiling transformation applied to
the reduction space can be expressed using the second piece of

430



the tiling schedule (1). Meanwhile, one can extract the affine
relation over statement S2 to tile dimensions from (1):

[{S2(h,w, kh, kw)→ (o0 = h/T2, o1 = w/T3)}] (2)

where o0 and o1 represent the tile dimensions. The access
relation over S2 to the upwards exposed data is written as:

{S2(h,w, kh, kw)→ A(h + kh,w + kw) : 0 ≤ h ≤ H −KH

∧0 ≤ w ≤ W −KW ∧ 0 ≤ kh < KH ∧ 0 ≤ kw < KW}
(3)

The relation between the tile dimensions (o0, o1) and the up-
wards exposed data tensor A can be constructed by intersecting
the reverse of (2) with (3):

{(o0, o1)→ A(h
′
, w

′
) : 0 ≤ o0 < d(H −KH + 1)/T2e

∧0 ≤ o1 < d(W −KW + 1)/T3e ∧ T2 · o0 ≤ h
′
< T2 · o0+

KH + T2 − 1 ∧ T3 · o1 ≤ w
′
< T3 · o1 + KW + T3 − 1}

(4)

which represents the dashed lines between the reduction space
and the data space in Fig. 4. It allows the overlapped memory
footprints between two consecutive computation tiles.

We continue by focusing on the blue tile and the red tile of
the reduction space. Without loss of generality, we assume T2 =

T3 = 2, and the blue tile can be represented using a coordinate
(o0 = 1, o1 = 0) in the space of tile dimensions while the red
tile can be represented using (o0 = 1, o1 = 1). One can apply (4)
to these tiles and obtain their memory footprints, which can
be written as {A(h′, w′) : 2 ≤ h′ ≤ 5 ∧ 0 ≤ w′ ≤ 3} and {A(h′, w′) :

2 ≤ h′ ≤ 5 ∧ 2 ≤ w′ ≤ 5} respectively. In other words, their
intersection is accessed by both tiles, which represents the
interleaved region between the blue and red tiles in the data
space.

B. Tiling Intermediate Computation Spaces

The memory footprints obtained by relation (4) can be used
to construct the tile shape of the quantization space, which
writes intermediate values to tensor A. With the polyhedral
model, one can determine the tile shape of the quantization
space using elementary operations on affine maps.

The polyhedral model can provide the write access relation
of the quantization space over tensor A. An affine function
mapping tensor A to the statement S0 can be computed by
reversing this write access relation:

{A(h,w)→ S0(h,w) : 0 ≤ h < H ∧ 0 ≤ w < W} (5)

This relation is represented using the dotted lines between the
data space and quantization space in Fig. 4. Intersecting (4)
with (5) generates another affine relation:

{(o0, o1)→ S0(h,w) : 0 ≤ o0 < d(H −KH + 1)/T2e
∧0 ≤ o1 < d(W −KW + 1)/T3e ∧ T2 · o0 ≤ h < T2 · o0
+KH + T2 − 1 ∧ T3 · o1 ≤ w < T3 · o1 + KW + T3 − 1}

(6)

which represents a function mapping the tile dimensions
(o0, o1) of the reduction space to a set of S0’s instances. In
other words, the tile dimensions of the reduction space divides
the statement instances of S0 into multiple subsets/tiles, which
implements the tiling of the quantization space without using
the first piece of the tiling schedule (1). We use extension
schedules to represent affine relations like (6), since they will
be used by an extension node in Section IV.

Intersecting (4) with (5) can be interpreted as the con-
junction of the dashed lines and dotted lines in Fig. 4.
All of the statement instances within the blue tile of the
quantization space can thus be represented as {S0(h,w) : 2 ≤

h ≤ 5 ∧ 0 ≤ w ≤ 3}, and those of the red tile should be
{S0(h,w) : 2 ≤ h ≤ 5 ∧ 2 ≤ w ≤ 5}. It means that the tile
shape of the quantization space computed using the extension
schedule (6) can overlap with each other, without modeling
non-affine expressions or refining scheduling algorithms. Note
that applying loop tiling using an extension schedule is not
possible in existing polyhedral compilation frameworks [6],
[11], [21], [54], [57].

C. The Tiling Algorithm
To summarize our approach to constructing arbitrary tile

shapes, we assume that there are only one live-out computation
space and multiple intermediate computation spaces after the
start-up fusion. Algorithm 1 formally describes the construc-
tion of arbitrary tile shapes.

Algorithm 1: Construct arbitrary tile shapes
Input: Spaces–A group of affine sets for computation spaces

1 liveout ← The live-out computation space of Spaces;
2 Spaces ← Spaces - liveout; Untiled ← ∅;

if liveout is tilable then
3 Mixed Schedules ← A tiling schedule like (1) for liveout;
4 m ← Number of parallelizable loops of Mixed Schedules;
5 data ← Upwards exposed data of liveout;
6 f ← A function of liveout like (4);

foreach S in Spaces do
7 n ← Number of parallelizable loops of S;

if m > n then
8 Untiled←Untiled ∪ S; continue;
9 stmts ← The set of statements in S; h ← ∅;

while stmts 6= ∅ do
10 dep ← Dependences caused by data;
11 s ← Source statements of dep ∩ stmts;
12 s ← s - the ranges of each map in h;
13 S ← The reverse of the write accesses of s;
14 h ← h ∪ f ·S; stmts ← stmts - s;
15 data ← data ∪ upwards exposed data of s;
16 Mixed Schedules ← Mixed Schedules ∪ h;

if Untiled 6= ∅ then
17 Mixed Schedules ← Mixed Schedules ∪ Apply Algorithm 1 to

Untiled;
else

18 Mixed Schedules ← Mixed Schedules ∪ Apply Algorithm 1 to
Spaces;

Output: Mixed Schedules

The algorithm takes a group of affine sets Spaces that
represent the computation spaces produced by a conservative
heuristic as input, and obtains the live-out computation space
liveout (line 1), which is subtracted from Spaces (line 2) and
the latter becomes the set of intermediate computation spaces.
When liveout is tilable, the algorithm first constructs a tiling
schedule of liveout for simple rectangular/parallelogram tiling
(line 3), which is used to initialize the output Mixed Schedules,
a union of tiling schedules and extension schedules. The
Pluto scheduler [11] or its variants can be used to construct
rectangular/parallelogram tile shapes. The relation between
upwards exposed data to the tile dimensions of liveout is
computed at lines 5-6.

431



The construction of tile shapes for each intermediate com-
putation space S is implemented between lines 7 and 17. The
algorithm compares the numbers of parallelizable loops n of S
with the parallelizable dimensions m of liveout. S should not
be tiled using upwards exposed data but be added to another
set Untiled that collects all affine sets like S (line 8) when m
is greater than n, which means the live-out computation space
has more parallelizable dimensions than that of S. One may
obtain an incorrect tiled version of S without this condition.

Note that each S will be either considered to be fused with
liveout (lines 9-16) or added to the Untiled set. The union of
S and liveout will be considered as the live-out computation
space. This guarantees that the visiting order of affine sets in
Spaces will not impact the correctness of post-tiling fusion.

The comparison between m and n is used to guarantee the
correctness and effectiveness of Algorithm 1, as well as those
of the post-tiling fusion as we will introduce in Section IV-B.
In particular, the condition m > n promises that an interme-
diate computation space with fewer parallel loops will not be
fused with a live-out computation space with more parallel
dimensions. Recall that we use two attributes, permutable
and coincident, of a band node to represent its tilability and
parallelism. A modern polyhedral scheduler always prefers
outer parallelism. It means that the n parallelizable loops
always appear at the outermost n levels of a multi-dimensional
loop nest. In practice, the parallelizable dimensions of a live-
out computation space may be greater than m. For example, a
live-out computation space has a 3D parallelizable band. One
can force m to be equal to 1, i.e., only the outermost loop to
be parallelizable, when targeting CPUs because OpenMP code
only provides 1D parallelism. One can also let m be equal to
2 when generating CUDA code for GPUs, which can allow
more aggressive fusion strategies without losing the two-level
hardware parallelism.

Comparing m and n preserves the parallelism of the live-
out computation space, but it may lose the parallelism of a
fused intermediate computation space. In the worst case when
n > m = 0, the parallelism of an intermediate computation
is completely lost. In such cases, we only assume a live-
out computation space is tilable if m is greater than 0 when
targeting CPUs, or if m is greater than 1 when targeting GPUs.

Lines 10-15 are used to compute an extension schedule
like (6). Lines 12-16 perform the elementary operations like
intersection and reverse, as mentioned in Sections III-A and
III-B. h is a union of extension schedules, which is used to
model the tiling of an intermediate computation space with
multiple statements. Each S should be tiled with h and added
to Mixed Schedules. The algorithm is recursively applied to
Untiled when the latter is not empty (line 17), or Spaces when
liveout is not tilable (line 18).

Our tiling algorithm can construct overlapped tile shapes
without refining the scheduling algorithms like the PolyMage
framework [41] does. The algorithm constructs overlapped tile
shapes of the intermediate computation spaces through the
tiles of upwards exposed data, avoiding the introduction of
complicated constraints to the affine relations implemented

in [60]. More importantly, unlike existing tiling techniques
for constructing complex tile shapes [9], [19], [33], [41],
[60], Algorithm 1 provides the ability to construct arbitrary
tile shapes and the general applicability to more application
domains due to the consideration of transformations on data in
memories. The tile shapes are determined by the access man-
ner of upwards exposed data. For example, one can convert the
example shown in Fig. 1(a) into matrix multiplication code by
fine-tuning the kh,kw loops and the corresponding subscripts.
The readers will find that our tiling technique can still apply
to the code by constructing rectangular tile shapes.

IV. POST-TILING FUSION

While used to construct arbitrary tile shapes, Algorithm 1
also implies aggressive fusion strategies. The number of fusion
groups suggested by Algorithm 1 is equal to its number of
invocation times. Mixed Schedules should be the union of
the second piece of the tiling schedule (1) and the extension
schedule (6) for the example in Fig. 1(a). The tiling schedule
maps each statement instance of the reduction space to a
lexicographical execution date; the extension schedule defines
a mapping over the tile dimensions (o0, o1) to the statement
instances of S0, which has to be integrated with post-tiling
fusion to apply loop tiling to the quantization space.

A. Facilitating Fusion using Schedule Trees

The schedule tree shown in Fig. 2(b) is the result of a con-
servative heuristic, with the fusion strategy ({S0}, {S1, S2, S3})

represented using the children of the top sequence node.
According to Algorithm 1, we first apply rectangular tiling

using the second piece of the tiling schedule (1) to the reduc-
tion space, which is represented as the second child of the top
sequence node. The original multi-dimensional affine schedule
of the band1 node in Fig. 2(b) should be replaced with this
tiling schedule, which is in turn split into two parts, with
one represented as [{S1(h,w) → (h/T2, w/T3);S2(h,w, kh, kw) →

(h/T2, w/T3);S3(h,w)→ (h/T2, w/T3)}] and the other [{S1(h,w)→

(h,w);S2(h,w, kh, kw) → (h,w, kh, kw);S3(h,w) → (h,w)}]. This
splitting operation isolates the tile dimensions and thus makes
it possible to implement tile-wise fusion between computation
spaces.

We use tile band and point band to represent these affine
relations after splitting the original band1 node, as shown in
Fig. 5. tile band represents the dimensions iterating among
tiles and point band represents the dimensions iterating within
tiles. We will explain the meaning of each introduced node
between tile band and point band soon. Note that we have
not yet applied tiling to the quantization space; the band node
band0 of the first filter node {S0(h,w)} is unchanged.
S0 can be viewed as foreign to the subtree rooted under the

filter node {S1(h,w);S2(h,w, kh, kw);S3(h,w)}. We mentioned in
Section II-B that we would use extension nodes to facilitate
post-tiling fusion. An extension node is originally designed to
add additional statements that are not covered by the domain
node of a schedule tree using an affine relation [22]. We

432



domain

sequence

{S0}

mark: “skipped”

band0

{S1;S2;S3}

tile band

extension: “expr (6)”

sequence

{S0}

band0

{S1;S2;S3}

point band

sequence

{S1} {S2}

[{S2(h,w, kh, kw) → (kh, kw)}]

{S3}

/* This loop nest will not be generated

due to the skipped mark.

for(h=0;h<H;h++)

for(w=0;w<W;w++)

S0(h,w);*/

#pragma omp parallel for

for(ht=0;ht<(H-KH)/T2;ht+=T2)

for(wt=0;wt<(W-KW)/T3;wt+=T3){
for(hp=0;hp<KH+T2-1;hp++)

for(wp=0;wp<KW+T3-1;wp++)

S0(h,w);

for(hp=0;hp<T2;hp++)

for(wp=0;wp<T3;wp++){
S1(ht+hp,wt+wp);

for(kh=0;kh<=KH;kh++)

for(kw=0;kw<=KW;kw++)

S2(ht+hp,wt+wp,kh,kw);

S3(ht+hp,wt+wp);

}
} kernel0

Fig. 5: The schedule tree of post-tiling fusion

extend the expressiveness of an expansion node to introduce
additional statements under a filter node in our case.

As shown on the left of Fig. 5, the extension node is
inserted underneath the tile band node, with its affine relation
assigned with (6). This simple manipulation on the schedule
tree implements overlapped tiling of S0 and the tile-wise
fusion of the original two computation spaces. Note that such
an extension to the expressiveness of the schedule tree rep-
resentation makes it possible to implement post-tiling fusion
in the polyhedral model, which is not possible in existing
polyhedral compilation frameworks [54], [57] that also use
schedule trees.

One can now schedule the statement instances of S0 under
the extension node. As we expect to implement tile-wise
fusion, a sequence node has to be introduced underneath the
extension node. The first child should be the filter node of the
original quantization space, i.e., {S0(h,w)}, while the second
should be the original reduction space. The subtree rooted at
point band is attached under the new introduced filter node
{S1(h,w);S2(h,w, kh, kw);S3(h,w)}. The original subtree band0

of the extended filter node {S0(h,w)} is also introduced to
instruct how the extended filter node is scheduled. Dupli-
cating such subtrees guarantees that the multiple statements
encompassed by the extended filter will be scheduled together.
Introducing a sequence node under the tile band also benefits
the intra-tile distribution transformation [63], which is used to
exploit the spatial locality on small scratchpads.

As we have fused the statement S0 using an extension
node, its original schedule, i.e., the left child of the top
sequence node should be ignored. This can be implemented
by introducing a mark node in schedule trees, as depicted
in Fig. 5. A mark node is used to attach information to the
schedule tree, providing more flexibilities to the polyhedral
model for code generation. We attach a string “skipped” to
the mark node, instructing the code generator to bypass the
subtree below.

A code generator can generate code as shown on the right
of Fig. 5 by scanning this schedule tree. The red and blue
arrows represent the relations between band nodes with the
loops they represent. Unlike the code shown in Fig. 1(b),

this code fuses all three loop nests into one group, allowing
tensor A to be allocated on small scratchpads. In addition, the
post-tiling fusion strategy does not lose the parallelism of the
fused dimensions, and one can add an OpenMP pragma before
the outermost loop when targeting CPUs. When generating
CUDA code for GPUs, the entire loop nest can be executed
by launching a single kernel, with ht, wt mapped to thread
blocks and each pair of hp,wp mapped to threads, and tensor
A is allowed to be declared on the share memory.

B. The Fusion Algorithm

Algorithm 2 formally describes the post-tiling fusion strat-
egy. It requires two inputs: one is a schedule tree built from
a multi-dimensional affine schedule obtained by a polyhedral
scheduler, and the other is the output of Algorithm 1.

Algorithm 2: The post-tiling fusion algorithm
Input: 1) Schedule Tree–a schedule tree before tiling, and 2) Mixed

Schedules–Output of Algorithm 1
foreach Schedule in Mixed Schedules do

if Schedule is a tiling schedule then
1 band ← Replace the original band node using Tiling;
2 m ← Number of parallelizable loops in Schedule;
3 tile band,point band ← Split band into tile dimensions and

point dimensions;
4 Intermediates ← All intermediate computation spaces that are

to be fused;
foreach I in Intermediates do

5 Schedule ← Extract the extension schedule over I like
(6) from Mixed Schedules;

6 n ← Number of parallelizable loops in Schedule;
if m > n then

7 Replace the extension schedule over I with a tiling
schedule in Mixed Schedules;

continue;
8 Insert an extension node to Schedule Tree;
9 Insert sequence and filter nodes to Schedule Tree;

10 Mark the original subtree of I as “skipped”;
Output: Schedule Tree–a schedule tree after tiling and fusion

The number of tiling schedules in Mixed Schedules is
exactly the number of fusion groups suggested by Algorithm 1.
For each group, Algorithm 2 first replaces the original band
node using Schedule (line 1), and splits it into two parts
as described in Section IV-A (line 3). The inner loop (lines
5-10) iterates over the intermediate computation spaces that
to be fused with the current live-out computation space. An
extension schedule of I should not be fused when m > n (line
7), with m and n representing the numbers of parallelizable
loops of a live-out computation space and I , respectively.
The purpose of comparing m and n has been explained
in Section III-C. Lines 8-10 perform the manipulations on
schedule trees.

Algorithm 2 returns a fusion strategy of ({S0, S1, S2, S3})

for the illustrative example, and the tiled and fused code is
shown in Fig. 5. Our post-tiling fusion algorithm does not
resort to tedious aggressive fusion heuristics used by existing
optimizers [11], [21], [54], [57] to maximize data locality.
More importantly, unlike the code shown in Fig. 1(c), the
post-tiling fusion algorithm does not lose the parallelism of
the program, which guarantees the high performance of the

433



generated code on various architectures by optimizing the
memory hierarchy.

C. Generalization

So far, we have always assumed that there exists only one
live-out computation space. We discuss the case of multiple
live-out computation spaces below.

Without loss of generality, we assume that there exist
two live-out computation spaces, liveout0 and liveout1. The
intermediate computation spaces can be divided into three cat-
egories: the first is composed of all intermediate computation
spaces of liveout0, the second is a collection of those used by
liveout1, and the third consists of all intermediate computation
spaces that used by both. The difficulty is how to handle an
intermediate computation space of the third category.

Consider the scene shown in Fig. 6(a) where the values
defined by op0 are used by both op1 and op2. We use op′0 to
represent the subset of op0 that computes the values used by
op1, and op′′0 the subset that writes to the values read by op2.
Existing heuristics [10], [28], [40] do not apply fusion when
the third category is present due to the possible redundant
computations. We observe that fusion is still possible in such
cases. With the post-tiling fusion strategy, one can still apply
loop fusion as shown in Fig. 6(b) when op′0 and op′′0 do not
intersect with each other, which will not result in redundant
computations. We do not allow fusion when the intersection of
op′0 and op′′0 is not empty which will produce redundancy. We
also prevent fusion when op0 cannot be fused to either of its
uses since the generated code cannot benefit from aggressive
memory optimizations. In summary, our fusion strategy never
introduces redundancy to the code.

op0

op1 op2

(a) One definition, multiple
uses

op′0 op′′0

op1 op2

(b) Fusion result

Fig. 6: Fusion strategy for multiple uses

Algorithm 3 describes our approach to compositing tiling
and fusion. The algorithm takes a schedule tree constructed
from a multi-dimensional affine schedule obtained by the
polyhedral model as input, and generates a tiled and fused
schedule tree as output. It implements a novel composition of
tiling and fusion in three steps.

First, each live-out computation space and its intermediate
computation spaces are extracted from the iteration domain
of the input schedule tree and saved in Spaces, to which
Algorithm 1 is then applied (line 3). This prevents the fusions
between live-out computation spaces, and it indeed makes
sense because live-out values do not necessarily need to be
allocated on small scratchpads. GroupsSet is a set of Groups,
i.e., the output of Algorithm 1 for each Spaces.

Algorithm 3: Reorder the sequence of tiling and fusion
Input: Schedule Tree–a schedule tree before tiling

1 Domain ← Domain node of Schedule Tree; GroupsSet ← ∅;
foreach liveout in Domain do

2 Spaces ← liveout and its intermediate computation spaces;
3 GroupsSet ← GroupsSet ∪ Apply Algorithm 1 to Spaces;

foreach SharedSpace in GroupsSet do
4 Intersect ← The intersection of all uses of SharedSpace;

if Intersect 6= ∅ then
5 Replace each extension schedule of SharedSpace with a tiling

schedule;
foreach Groups and SharedSpace in GroupsSet do

6 Schedule Tree ← Apply Algorithm 2 to Groups;
if SharedSpace cannot be fused with its uses then

7 Remove the introduced nodes related to SharedSpace in
Schedule Tree;

Output: Schedule Tree–after tiling and fusion

The second step of is to handle each intermediate com-
putation space SharedSpace that is used by multiple live-
out computations. Line 4 is computing the intersection of
all extension schedules with respect to SharedSpace. If the
intersection is not empty, the algorithm replaces all extension
nodes of SharedSpace using tiling schedules (line 5). This
means that SharedSpace will not be fused.

The final step is the last loop in the algorithm. It first applies
Algorithm 2 to Groups (line 7) for constructing schedule trees
after tiling and fusion. If SharedSpace cannot be fused to any
of its uses, the algorithm will remove the introduced nodes
related to SharedSpace in Schedule Tree, which prevents the
possible fusion and avoids redundant computations.

Note that Algorithm 3 can also implement dead code
elimination in some extreme cases. Suppose that the union of
the tiles computed using (6) is a strict subset of the iteration
domain of S0. These tiles can still be fused with the subtree of
the reduction space, while the original subtree representing S0

are skipped. The post-tiling algorithm in this case eliminates
dead stores of S0 while maintaining the semantic of the
program. This fine-grained dead code elimination was not
considered by existing polyhedral optimizers [11], [21], [56].

D. General Applicability

Now we discuss the general applicability of our approach.
First, the tile shapes constructed by Algorithm 1 can be rect-
angular/parallelogram or in an overlapped form. In the latter
case, our algorithm enables tile-wise concurrent start [33] by
minimizing the recomputations required by overlapped tiling.
Algorithm 1 boils down to classical rectangular/parallelogram
tiling when no extension schedules are found.

Second, compositing tiling and fusion using extension
schedules requires the presence of producer-consumer rela-
tions across loop nests. This makes our approach fail to con-
struct complex tile shapes for a single loop nest of stencils that
was studied by existing techniques [9], [19], [33]. However,
our approach is well suited for applications with multiple loop
nests, like neural networks, image processing pipelines, finite
element methods and linear algebra. One can unroll the time
dimension of a stencil kernel to transform it into multiple loop

434



nests, to which our work can apply due to the introduced
producer-consumer relations across loop nests.

Finally, our approach is very useful for the cases when
maximizing fusion does not lose the parallelism of interme-
diate computation spaces, but it may not be a good choice
for programs with multiple consecutive reduction operations,
where the parallelism of intermediate reductions cannot be
preserved.

V. CODE GENERATION

We implement our approach using the isl library [56] due
to its ability to generate AST by scanning schedule trees. This
allows us to generate codes for different architectures by first
generating AST and then converting the AST to imperative
codes using a pretty-print scheme. The PPCG [57] compiler
is a polyhedral code generator that wraps isl for manipulating
integer sets/maps and generating AST; it finally converts the
AST generated by isl to OpenMP C code or CUDA code. We
implement our algorithms in the PPCG compiler to generate
OpenMP code for CPUs and CUDA code for GPUs.

A weakness of PPCG’s OpenMP backend is that it cannot
exploit automatic vectorization. We identify the innermost
parallel loop and add an ivdep directive for indicating the
absence of loop-carried dependences. The compilers used to
compile the generated OpenMP code like Intel icc can thus
execute the innermost loop with SIMD instructions.

Generating CUDA code for GPUs requires the ability to
map parallel loops to thread blocks and threads on GPUs.
The CUDA backend of the PPCG compiler models the GPU
mapping by leveraging mark nodes of schedule trees. The
outermost parallel band node tile band in Fig. 5 is marked
using a “kernel” string, which instructs the code generator
to map the ht and wt loops represented by tile band to
GPU thread blocks. A “thread” mark is introduced before the
point band node and the band0 node, which tells the code
generator to map the hp and wp loops to GPU threads.

A. Domain-Specific Code Generation

We also integrate our approach into the akg (auto ker-
nel generator) compiler, a wrapper of TVM [13] to gen-
erate code for neural networks on domain-specific ac-
celerators. The akg compiler is publicly accessible at
https://gitee.com/mindspore/akg, and it has been integrated
into the Huawei MindSpore framework [1] which can provide
a DSL to its users for expressing algorithms without taking
into consideration the details of underlying architectures. The
DSL will then be transformed into Halide IR (intermediate
representation), which can be optimized and scheduled either
by an expert that is familiar with the target architecture using
the schedule primitives provided by the framework, or by the
akg compiler. For example, one can apply loop tiling using
the tile primitive or loop fusion with the fuse primitive.

The AI platform we target is a dedicated accelerator to
boost neural networks–Huawei Ascend 910 chip, of which
the DaVinci architecture [36] is depicted in Fig. 7. Cube Unit
is a specialized execution unit for performing tensor/matrix

operations by taking as input the data in L0A and L0B, of
which the output is stored into L0C. L0A/L0B can fetch data
from L1 Buffer. The data in L0C can also be transferred to
Vector Unit. Vector/Scalar Units are designed for executing
vector/scalar operations. They are allowed to read/write data
from/to Unified Buffer, which in turn can exchange data with
L0C. L1 Buffer and Unified Buffer are serving as on-chip
lower-level caches and used for exchanging data with external
memory which is not shown in the figure. Data exchange
between L1 Buffer and Unified Buffer is permitted.

The programming model of the accelerator is designed
by fully considering the domain-specific properties of ap-
plications and the underlying architecture. For example, a
convolution operator can be implemented by emitting a single
vector instruction using the programming model. The generate
CCE code will be compiled with native compilers on the chip,
with the same compilation options set for all the versions used
in the experiments.

L1 Buffer

L0A

L0B
Cube Unit L0C

Unified Buffer
Scalar Unit

Vector Unit

DaVinci Core

Fig. 7: Overview of the DaVinci architecture

Instead of refining the polyhedral scheduling algorithms to
model more tile shapes and/or aggressive fusion strategies, the
purpose of this work is to allow more combinations of fusion
and tiling that were missed before. The post-tiling fusion is
very useful when optimizing neural network applications. The
akg project indeed implements a more accurate cost model by
fully considering the DaVinci architecture, which is enabled
when experimenting different versions in the evaluation for a
fair comparison. In addition, we also implement a technique to
handle parametric tile sizes in the akg project, but this property
is disabled in the experiment. Explaining these features are out
of the scope of this work. Please refer to the open accessible
website of akg for the detailed implementation.

Also, rather than resorting to the manual scheduling ap-
proach, we introduce another pass in the akg project by
lowering the Halide IR to the schedule tree representation,
which will be optimized using our approach. The output
schedule tree will be transformed back to the Halide IR for
the follow-up code generation. The target imperative code of
our AI accelerator, which we refer to as CCE code, will then
be generated from the automatically optimized Halide IR.

B. Aggressive Memory Optimizations

Our approach maximizes data locality without hampering
tilability or parallelism, but compilation optimizations may not
be very effective without storage reductions for the memory
hierarchy due to the streaming nature of applications.

The values produced by an intermediate computation space
are only used within a tile, and can thus be discarded after

435



the computation of a tile [28], [41], [60]. We automatically
allocate such values on small scratchpads when generating
OpenMP code. The indexing expressions are determined using
the range of the affine relations generated by Algorithm 1.

The CUDA backend of PPCG provides us a software-
controlled scheme to use the shared/private memory on GPU
effectively. PPCG computes an over-approximated rectangular
box for complex tile shapes that access non-rectangular blocks
of data and therefore enables the allocation of the intermediate
values on the shared/private memory. This strategy is also used
by existing compilation techniques [19], [60].

We also automate the memory promotion to higher-level
caches of the DaVinci architecture using schedule trees. Gen-
erally speaking, we resort to mark nodes for managing the
data flow between different computation units and extension
nodes for the memory optimization and allocation, like the
TensorComprehensions framework [54] does. The integration
of isl into TVM implements the deployment of a neural
network on Ascend 910 by only manipulating schedule trees,
allowing the framework work with both inference and training
of a network.

VI. EXPERIMENTAL EVALUATION

We select benchmarks from PolyBench [45], PolyMage
benchmarks [42], SPEC CPU2000 [26] by considering the
following criteria. First, a benchmark is composed of multiple
loop nests so that loop fusion can make sense. Second, a
polyhedral compiler may find different fusion strategies using
an aggressive fusion heuristic; otherwise, our approach may
generate the same code as the default fusion heuristic.

The platform for evaluating OpenMP code is a 32-core,
dual-socket workstation, of which each CPU is a 2.10GHz
16-core Intel Xeon(R) E5-2683 v4. The OpenMP code is
compiled with Intel icc compiler 18.0.1 with options -qopenmp
-ipo -O3 enabled. CUDA code is compiled by the NVIDIA
CUDA toolkit version 9.1 with -O3 flag, of which the ex-
ecutable is run on an NVIDIA Quadro P6000 GPU. Each
benchmark is executed 11 times with the first run used as a
warm-up execution and discarded. We report the average of the
remaining 10 execution of each benchmark. By considering 7
possible tiles sizes including 8, 16, 32, 64, 128, 256 and 512
for each dimension, the PolyMage framework uses an auto-
tuning strategy for tile size selection. Such auto-tuned tile sizes
are also listed in Table I.

A. Performance on CPU

Image Processing Pipelines. An image processing pipeline
performs a given task on input images, using a variety
of operations like stencils and complex reductions. We use
six image processing pipelines extracted from the PolyMage
benchmarks which vary widely in structure and complexity.
Table I lists the PolyMage benchmarks [42]. We compare
the performance with a domain-specific compiler, PolyMage
[41], and Halide’s [48] manual schedule written by experts.
The PolyMage compiler generates both naı̈ve and optimized
OpenMP codes by taking a DSL as input. The sequential code

of a naı̈ve version is used as the baseline and also the input
of PPCG that implements our approach, as a naı̈ve version
is generated by PolyMage without applying tiling or fusion.
On the contrary, an optimized version is generated by fully
exploiting fusion and overlapped tiling opportunities.

The parameters like tile sizes, vector lengths and unroll
factors of both PolyMage and Halide have been tuned for our
platform. We use the same auto-tuned tile sizes and keep the
code generation parameters identical with PolyMage for a fair
comparison. This isolates the effect of the fusion strategies and
tile shapes. The tile sizes and the execution times of different
versions are also reported. One can obtain the speedups of over
PolyMage and Halide using such numbers, which are shown
in Fig. 8. On average, our approach provides 20% and 33%
improvements over PolyMage and Halide.

Our approach produces more aggressive fusion strategies
for Bilateral Grid [12], [44], Multiscale Interpolation, Lo-
cal Laplacian Filter [5], [43] and Unsharp Mask than both
PolyMage and Halide. Aggressive fusion strategies found by
our approach imply more intermediate stages when coupled
with overlapped tiling, and more intermediate values can be
allocated on small scratchpads, leading to better performance.
PolyMage implements the tiling-after-fusion policy; Halide
only provides schedule primitives for computation spaces
without considering the transformations on data spaces. Nei-
ther of them can construct an extension schedule like (6) and
thus fails to find the same fusion results as our approach.

PolyMage and our work can also automatically apply an
inlining transformation to Harris Corner Detection [23], which
was missed by the manual schedule of Halide. This inlining
transformation results in 2 remaining stages, and our work
generates the same code as PolyMage and thus obtains the
same result, outperforming Halide’s manual schedule by 2×.

For Camera Pipeline, our approach generates the same
fusion result as PolyMage, which is more aggressive than that
of Halide, but our approach can construct tighter overlapped
tile shapes which are determined by the memory footprints.
Conversely, PolyMage applies overlapped tiling by only trans-
forming computation spaces, leading to over-approximated
recomputations and performance degradation.

Finite Element Method. equake [7] is a benchmark ex-
tracted from SPEC CPU2000. It performs a finite element
method using a 3D sparse matrix-vector (SpMV) computation.
The 3D SpMV computation updates an unstructured mesh
using a reduction array, which is followed by a group of affine
loop nests performing elementary operations on the mesh. The
imperfect loop nest of the 3D SpMV computation consists of
three components, with the first one initializing the reduction
array, the second performing reduction using a while loop,
and the third gathering the reduction variables to update the
global mesh. The reduction step involves a dynamic condition
along the second dimension due to the use of a while loop,
which is handled by PPCG as a block box.

One can manually permute the while loop into the in-
nermost dimension to create fusion opportunities for PPCG
that provides three different fusion heuristics. The default

436



TABLE I: Results of the PolyMage Benchmarks

Benchmark stages Tile size GPU grid CPU execution time (ms) GPU execution time (ms) Compilation time (s)

parameter naı̈ve
(1 core)

PolyMage
(32 cores)

Halide
(32 cores)

Our work
(32 cores)

PPCG
(minfuse) Halide Our

work minfuse smartfuse maxfuse Our
work

Bilateral Grid 7 8×128 8×64 66.01 5.57 4.23 4.11 5.07 3.79 4.09 0.15 120 >24h 0.86
Camera Pipeline 32 64×256 16×32 116.32 4.68 4.76 4.40 3.51 2.47 2.38 18.3 20.9 >24h 4560

Harris Corner Detection 11 32×256 16×32 246.88 5.10 10.71 5.10 1.79 1.68 1.60 0.03 0.06 0.12 435
Local Laplacian Filter 99 8×256 8×64 480.48 35.35 29.12 27.08 16.73 12.53 11.12 6.94 90.8 >24h 89.3

Multiscale Interpolation 49 32×128 32×16 209.10 16.44 20.07 14.87 15.75 25.65 13.37 0.68 1.40 >24h 3.30
Unsharp Mask 4 8×512 8×32×3 142.16 5.01 5.02 3.68 2.03 1.94 2.01 0.06 0.08 0.10 0.05

1 4 16 32
0

5

10

15

(a) Bilateral Grid
1 4 16 32

0

10

20

(b) Camera Pipeline
1 4 16 32

0

20

40

(c) Harris Corner Detection
1 4 16 32

0

5

10

15

(d) Local Laplacian Filter
1 4 16 32

0

5

10

15

(e) Multiscale Interpolation
1 4 16 32

0

10

20

30

40

(f) Unsharp Mask

PolyMage naı̈ve PolyMage optimized Halide manual Our work

Fig. 8: Performance of PolyMage benchmarks on CPU (x axis: # of threads; y axis: speedup over sequential code)

heuristic that is represented as smartfuse tries to maximize
fusion without hampering the parallelism or tilability. A more
conservative strategy, minfuse, does not fuse any loop nests.
Our implementation in PPCG is derived from minfuse. The
most aggressive heuristic maximizes fusion regardless of the
parallelism or tilability, represented as maxfuse.

smartfuse fuses the three components of the 3D SpMV
computation together. On the contrary, maxfuse fuses the
gathering component with the follow-up affine loop nests.
The fusion strategy found by our approach is identical with
that of maxfuse. The speedups over the baseline version of
different fusion heuristics are shown in Fig. 9, with the x axis
representing the problem sizes. As only the outermost loop
is tilable, all versions did not apply loop tiling. Algorithm 1
returns an extension schedule with an empty domain, allowing
the fusion without loop tiling. This also validates that our post-
tiling fusion scheme is applicable without tiling.

test train ref

0.6
1

1.4

Sp
ee

du
p

minfuse smartfuse maxfuse Our work

Fig. 9: Performance of equake on CPU (32 cores)

Without the manual permutation of the while loop, PPCG
cannot exploit loop fusion due to the dynamic condition
introduced by the while loop. However, this permutation
transformation is harmful to data locality, which makes the
performance of PPCG’s fusion heuristics fall behind our
approach. Our approach does not require such manual per-
mutation as a preprocessing step.

Linear Algebra and Data Mining. The benchmarks ex-
tracted from PolyBench [45] are summarized in Table II.
PolyBench is a collection of micro kernels for linear algebra,
stencil computation and physical simulation. 20 out of the 30

PolyBench benchmarks are excluded since they do not require
loop fusion due to the structure of perfectly nested loops.
Our approach generates the same fusion results as smartfuse
for 3 of the remaining 10, which are not considered in the
evaluation. This validates that our algorithm can fall back to
smartfuse in the worst case. Due to the page limit, we only
choose 3 representative kernels that our approach generates
different fusion results from smartfuse. The others perform
similarly to those shown here.

TABLE II: CPU execution time of the PolyBench benchmarks

2mm gemver covariance

threads 1 8 32 1 8 32 1 8 32

sequential
icc

minfuse
smartfuse
maxfuse

hybridfuse
Our work

4.9
2.8

15.3
15.3
15.4
9.1

15.3

-
2.5
2.6
2.6
2.5
1.6
2.5

-
2.4
1.1
1.1
1.0
0.7
1.1

0.07
0.06
0.08
0.08
0.46
0.11
0.08

-
0.07
0.03
0.03
8.86
0.03
0.03

-
0.21
0.03
0.03

16.88
0.03
0.03

8.1
8.4
10.3
10.3
10.7
×

10.5

-
8.5
2.7
2.7
3.6
×
2.7

-
8.9
1.1
1.1
4.6
×
1.1

We still compare the performance with different fusion
heuristics of PPCG. Besides, we also compare with hybridfuse,
the hybrid fusion heuristic used by the Pluto optimizer [11]
which fuses outer loop dimensions using a conservative heuris-
tic but maximizes the fusion at the inner level of a loop
nest. We use same tile sizes (32×32) default enabled by these
compilers for each benchmark; tuning the tile sizes does not
impact the execution time too much.

2mm is a kernel performing 2 matrix-matrix multiplications.
We did not observe significant variations in its execution
time when using different fusion heuristics of PPCG or our
approach, since the parallelism/tilability is preserved by each
fusion heuristic. hybridfuse achieves the best performance,
since maximizing fusion at the innermost level benefits the
automatic vectorization of the icc compiler. Integrating with a
hybrid fusion heuristic may be an interesting direction for our
approach to follow.

437



gemver is composed of 4 loop nests performing vector
multiplications, additions and matrix-vector multiplications.
covariance is used to compute the covariance of data samples
from different populations in data mining. One can observe
that maxfuse suffers from significant performance degradation
due to the lose of parallelism for these two benchmarks.
Our approach enables rectangular/parallelogram tile shapes for
these benchmarks. The fusion strategy found by our approach
is more aggressive than that of smartfuse, but we did not lose
parallelism or tilability. hybridfuse generates a segmentation
fault (represented as ×) for covariance.

We did not apply aggressive storage optimizations for these
micro kernels. This demonstrates that the composition of tiling
and fusion exploited by our approach can also improve the
performance of programs by maximizing data locality.

B. Performance on GPU

We now evaluate the performance on GPU. The perfor-
mance of those benchmarks extracted from the PolyBench
benchmark suites follows the same trend with that of the CPU
case; we thus do not discuss them here.

Image Processing Pipelines. As PolyMage does not target
GPUs, we only compare the performance with Halide’s manual
schedule. The baseline version is generated by PPCG without
our approach, which implements rectangular/parallelogram
tiling and the minfuse heuristic. The auto-tuned tile sizes are
identical with those shown in Table I, with the auto-tuned GPU
grid parameters listed in the fifth column.

The results are shown in Fig. 10. The numbers of smartfuse
and maxfuse are missing for some of the benchmarks because
they cannot terminate within a reasonable amount of time. We
will explain the time complexity issue in Section VI-D.

BG CP HC LF MI UM

0.7
1

1.3

Sp
ee

du
p

ov
er

m
in

fu
se smartfuse maxfuse Halide manual Our work

Fig. 10: Performance of PolyMage benchmarks on GPU

minfuse does not fuse any of the 4 stages of Unsharp
Mask, failing to benefit from the shared/private memory. While
smartfuse exploits 3D parallelism by fusing the 4 stages into
2 groups, maxfuse groups all of the stages together but boils
down to 2D parallelism and using 128 × 3 as the GPU grid
parameters. maxfuse suffers from performance degradation due
to the lose of parallelism. None of the fusion heuristics of
PPCG applies fusion to Harris Corner Detection which is
prevented by overlapped memory footprints. Our approach
obtains superior performances because our CUDA code max-
imizes the utilization of the shared/private memory due to the
aggressive fusion results and overlapped tile shapes. Besides,
our technique does not lose parallelism.

Halide outperforms our approach slightly for Bilateral Grid
and Unsharp Mask since it manually applies unrolling trans-

formations to the channel dimension of the input images
after tiling. This can benefit the instruction level pipelined
parallelism of the benchmarks, and is an interesting direction
for our approach to follow in the future. Our approach provides
a mean performance improvement of 17% over Halide.

Finite Element Method. PPCG cannot generate effective
CUDA code for equake due to the presence of the while
loop. Its enhancement [61] converts the while loop into a so-
called dynamic counted loop using a preprocessing step, which
allows the exploration of loop tiling and fusion in the polyhe-
dral model. The code generation algorithm then introduces a
goto statement to eliminate the over-approximated iterations
caused by the preprocessing. This may achieve 2.3× speedup
over the default setting of PPCG. However, the fusion strategy
is exploited by hand in [61]. Our approach achieves the same
result as the manual approach but automates the composition
of tiling and fusion, which benefits the performance by taking
advantage of faster memory on GPU.

C. Performance on AI Accelerator

We use the ResNet-50 model [25], a 50-layer deep network
that is trained on more than one million images from the
ImageNet database [15], to conduct experiments on the AI
accelerator. The ResNet-50 model used in our experiment is
composed of a variety of operators including forward/back-
ward 2D convolutions, batch normalizations, and ReLUs. The
smartfuse heuristic of isl failed to fuse convolutions and
batch normalizations. Our approach uses smartfuse as the
start-up heuristic and enables overlapped tiling and allows
the fusion of each forward convolution with its following
batch normalization. minfuse may prevent the vectorization of
the CCE code by separating the initialization and reduction
statements of a convolution operator and we therefore do not
compare with it. The execution time on our AI accelerator is
shown in Table III. The numbers of maxfuse are missing due
to the tedious compilation time of the heuristic.

TABLE III: Results of the ResNet-50 model

Execution time (ms) Compilation time (s)

smart Our work Speedup smart Our work

fwd conv+batchnorm 11.50 6.69 1.72× - -
entire workload 35.03 30.25 1.16× 736 487

The tile sizes are specified by experts in the DSL and we did
not use the auto-tuner of the framework. The network is trained
with the requirement of no less than 76% validation accuracy
and the execution time is reported for a single training epoch.
We first compare the execution time of all forward convolution
and batch normalization operations. This isolates the effect
of our approach from other unrelated optimizations of the
entire workload. Our technique can obtain 72% performance
improvement over smartfuse. This is because the off-chip
memory latency is very expensive on Ascend 910 chips, and
our approach avoids such data transfers. We also show the
execution time of the entire workload of Resnet-50, with
an improvement of 16% obtained for the entire network.

438



Optimizing the fusion of backward convolution with other
operators is our future work.

D. Comparison of Time Complexity

Our approach can also benefit the compilation time of
the polyhedral model. We mainly discuss the image process-
ing pipelines and the ResNet-50 model which challenge the
scalability of aggressive fusion heuristics. The compilation
overheads for the remaining benchmarks are lightweight and
we do not discuss them here. We report the compilation time
for generating OpenMP code; the compilation overhead for
generating CUDA code follows a similar trend with the CPU
case. The data of the ResNet-50 workload is collected when
generating CCE code on the Ascend 910 chip. The comparison
of compilation time is shown in Table I and III.

maxfuse cannot finish within one day for most of the
image processing pipelines, including Bilateral Grid, Camera
Pipeline, Multiscale Interpolation and Local Laplacian Filter.
smartfuse also suffers from the tedious compilation time for
two of them. Our approach can alway terminate within 8
minutes (except Camera Pipeline).

The exceptional case is Harris Corner Detection, for which
our approach takes longer time than the heuristics. This is
because the very complex access pattern presented in the
benchmark will lead to an extremely tedious computation of
upwards exposed data when using isl [56].

Our algorithm exploits an aggressive fusion strategy than
smartfuse when targeting the Ascend 910 chip, generating
fewer computation spaces that need to be scanned by the
code generator. This reduces the time of code generation for
ResNet-50 and therefore moderates the compilation time of
the ResNet-50 model on our AI accelerator.

VII. RELATED WORK

As we presented in the previous sections, our approach
exploits a novel combination of loop tiling and fusion to max-
imize the utilization of the memory hierarchy by introducing
a post-tiling fusion pass. Loop fusion [37], [47], [49] was
revisited widely in the past few years for optimizing locality
on modern domain-specific chips. The fusion heuristics were
well studied for both general-purpose optimizers and domain-
specific frameworks, but a well-defined cost model for an
optimal solution to different architectures is still not found.
The underlying principle is due to the conflict demands of par-
allelism and locality, as demonstrated in this work. Designing
aggressive fusion heuristics cannot avoid this difficulty, and we
thus implemented a post-tiling fusion strategy which makes no
tradeoffs between parallelism, locality and recomputation.

Tiling [27], [58] was unified into the polyhedral model
using affine relations [11], followed by numerous publications
on complex tile shapes [9], [14], [19], [20], [33], [50], [62]
and parameterized tile sizes [24], [30], [39], [51]. The tile
size selection issue was partially addressed by auto-tuning
tools [3], [4], [13], [54] that can be used as a complementary
optimization for our approach, but complex tile shapes that
benefit aggressive storage optimizations like overlapped tiling

were insufficiently integrated within polyhedral frameworks.
PolyMage [41] constructs looser overlapped tile shapes by
refining its scheduling algorithm and code generator, leading
to rather insufficient parallelism of the applications it targets;
a schedule-tree-based enhancement of overlapped tiling [60]
minimized the recomputation caused by such shapes but
missed the exploration of optimized fusion strategies. Our
approach does not introduce redundant recomputation when
compared with the PolyMage framework [41], but also goes
beyond the work of tighter tile shapes [60] by designing a
two-level fusion strategy.

Halide [3], [48] was proposed to describe and optimize
image processing pipelines in an easier way by isolating
schedules from algorithms. Such idea of isolation was also
adapted by later deep learning compilers like TVM [13]. Part
of such frameworks [13], [41], [48] only provide users with
schedule primitives for transforming computations. This makes
such frameworks generate potentially similar fusion result as
that shown in Fig. 1(b) for the example in Fig. 1(a) due
to the conflict in data spaces. As the schedule primitives
cannot transform data spaces, these frameworks are not able to
compute extension schedules like (6) and therefore fail to fuse
the two computation spaces. This problem also arises in the
XLA compiler [35]. Our approach overcomes this weakness.
The polyhedral model was also integrated into MLIR [34]
which provides a mechanism to transform both computation
and data spaces. We plan to implement our approach in the
MLIR project in the future.

VIII. CONCLUSION

Compiler optimizations are designed to make effective
use of the memory structure on architectures, but some
transformations like tiling and fusion usually interfere with
each other and therefore fail to maximize the utilization of
the memory hierarchy. We proposed a new composition of
tiling and fusion in the context of the polyhedral model,
enabling aggressive storage optimizations and optimizing the
memory hierarchy by constructing arbitrary tile shapes and
facilitating aggressive fusion strategies. We have validated
the effectiveness of our technique on various architectures
by conducting experiments on the benchmarks extracted from
numerous application domains. In particular, we considered
the portability of our approach to domain-specific accelerators
like Huawei Ascend 910 chips. Our approach also provided a
reasonable improvement of compilation overhead over existing
aggressive heuristics.

ACKNOWLEDGMENT

The authors are grateful to the MICRO 2020 reviewers
for detailed and valuable comments that have improved the
paper. This work was partly supported by the National Natural
Science Foundation of China under Grant No. 61702546. Both
authors are the corresponding authors. The authors would also
like to acknowledge the input and discussions from the Huawei
MindSpore team.

439



REFERENCES

[1] “Mindspore,” URL: https://www.mindspore.cn/en, 2020.
[2] A. Acharya, U. Bondhugula, and A. Cohen, “Polyhedral auto-

transformation with no integer linear programming,” in Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2018. New York, NY, USA:
ACM, 2018, pp. 529–542. [Online]. Available: http://doi.acm.org/10.
1145/3192366.3192401

[3] A. Adams, K. Ma, L. Anderson, R. Baghdadi, T.-M. Li, M. Gharbi,
B. Steiner, S. Johnson, K. Fatahalian, F. Durand, and J. Ragan-Kelley,
“Learning to optimize halide with tree search and random programs,”
ACM Trans. Graph., vol. 38, no. 4, pp. 121:1–121:12, Jul. 2019.
[Online]. Available: http://doi.acm.org/10.1145/3306346.3322967

[4] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible
framework for program autotuning,” in Proc. of the 23rd Intl. Conf.
on Parallel Architectures and Compilation, ser. PACT ’14. New
York, NY, USA: ACM, 2014, pp. 303–316. [Online]. Available:
http://doi.acm.org/10.1145/2628071.2628092

[5] M. Aubry, S. Paris, S. W. Hasinoff, J. Kautz, and F. Durand, “Fast
local laplacian filters: Theory and applications,” ACM Trans. Graph.,
vol. 33, no. 5, pp. 167:1–167:14, Sep. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2629645

[6] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas,
Y. Zhang, P. Suriana, S. Kamil, and S. Amarasinghe, “Tiramisu:
A polyhedral compiler for expressing fast and portable code,” in
Proceedings of the 2019 IEEE/ACM International Symposium on
Code Generation and Optimization, ser. CGO 2019. Piscataway,
NJ, USA: IEEE Press, 2019, pp. 193–205. [Online]. Available:
http://dl acm.gg363.site/citation.cfm?id=3314872.3314896

[7] H. Bao, J. Bielak, O. Ghattas, L. F. Kallivokas, D. R. O’Hallaron,
J. R. Shewchuk, and J. Xu, “Large-scale simulation of elastic wave
propagation in heterogeneous media on parallel computers,” Computer
Methods in Applied Mechanics and Engineering, vol. 152, no. 1,
pp. 85 – 102, 1998, containing papers presented at the Symposium
on Advances in Computational Mechanics. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0045782597001837

[8] C. Bastoul, “Code generation in the polyhedral model is easier than
you think,” in Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 7–16.
[Online]. Available: https://doi.org/10.1109/PACT.2004.11

[9] U. Bondhugula, V. Bandishti, and I. Pananilath, “Diamond tiling: Tiling
techniques to maximize parallelism for stencil computations,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 5, pp.
1285–1298, Oct. 2017.

[10] U. Bondhugula, O. Gunluk, S. Dash, and L. Renganarayanan, “A
model for fusion and code motion in an automatic parallelizing
compiler,” in Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT ’10.
New York, NY, USA: ACM, 2010, pp. 343–352. [Online]. Available:
http://doi.acm.org/10.1145/1854273.1854317

[11] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’08. New York,
NY, USA: ACM, 2008, pp. 101–113. [Online]. Available: http:
//doi.acm.org/10.1145/1375581.1375595

[12] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image
processing with the bilateral grid,” in ACM SIGGRAPH 2007 Papers,
ser. SIGGRAPH ’07. New York, NY, USA: ACM, 2007. [Online].
Available: http://doi.acm.org/10.1145/1275808.1276506

[13] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm:
An automated end-to-end optimizing compiler for deep learning,”
in Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’18. Berkeley, CA,
USA: USENIX Association, 2018, pp. 579–594. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3291168.3291211

[14] E. C. Davis, M. M. Strout, and C. Olschanowsky, “Transforming
loop chains via macro dataflow graphs,” in Proc. of the 2018 Intl.
Symp. on Code Generation and Optimization, ser. CGO 2018. New

York, NY, USA: ACM, 2018, pp. 265–277. [Online]. Available:
http://doi.acm.org/10.1145/3168832

[15] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, June 2009, pp. 248–255.

[16] V. Elango, N. Rubin, M. Ravishankar, H. Sandanagobalane, and
V. Grover, “Diesel: Dsl for linear algebra and neural net computations
on gpus,” in Proceedings of the 2nd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, ser.
MAPL 2018. New York, NY, USA: ACM, 2018, pp. 42–51. [Online].
Available: http://doi.acm.org/10.1145/3211346.3211354

[17] P. Feautrier, “Some efficient solutions to the affine scheduling problem.
part i. one-dimensional time,” International journal of parallel program-
ming, vol. 21, no. 5, pp. 313–347, 1992.

[18] P. Feautrier, “Some efficient solutions to the affine scheduling problem.
part ii. multidimensional time,” International journal of parallel pro-
gramming, vol. 21, no. 6, pp. 389–420, 1992.

[19] T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan, and S. Verdoolaege,
“Hybrid hexagonal/classical tiling for gpus,” in Proceedings of
Annual IEEE/ACM International Symposium on Code Generation and
Optimization, ser. CGO ’14. New York, NY, USA: ACM, 2014, pp.
66:66–66:75. [Online]. Available: http://doi.acm.org/10.1145/2544137.
2544160

[20] T. Grosser, A. Cohen, P. H. J. Kelly, J. Ramanujam, P. Sadayappan,
and S. Verdoolaege, “Split tiling for gpus: Automatic parallelization
using trapezoidal tiles,” in Proc. of the 6th Workshop on General
Purpose Processor Using Graphics Processing Units, ser. GPGPU-6.
New York, NY, USA: ACM, 2013, pp. 24–31. [Online]. Available:
http://doi.acm.org/10.1145/2458523.2458526

[21] T. Grosser, A. Groesslinger, and C. Lengauer, “Polly–performing poly-
hedral optimizations on a low-level intermediate representation,” Parallel
Processing Letters, vol. 22, no. 04, p. 1250010, 2012.

[22] T. Grosser, S. Verdoolaege, and A. Cohen, “Polyhedral ast generation
is more than scanning polyhedra,” ACM Trans. Program. Lang.
Syst., vol. 37, no. 4, pp. 12:1–12:50, Jul. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2743016

[23] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Alvey vision conference, vol. 15, no. 50, 1988, pp. 10–5244.

[24] A. Hartono, M. M. Baskaran, C. Bastoul, A. Cohen, S. Krishnamoorthy,
B. Norris, J. Ramanujam, and P. Sadayappan, “Parametric multi-level
tiling of imperfectly nested loops,” in Proceedings of the 23rd
International Conference on Supercomputing, ser. ICS ’09. New
York, NY, USA: ACM, 2009, pp. 147–157. [Online]. Available:
http://doi.acm.org/10.1145/1542275.1542301

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016, pp. 770–778. [Online].
Available: https://www.computer.org/10.1109/CVPR.2016.90

[26] J. L. Henning, “Spec cpu2000: measuring cpu performance in the new
millennium,” Computer, vol. 33, no. 7, pp. 28–35, July 2000.

[27] F. Irigoin and R. Triolet, “Supernode partitioning,” in Proc. of the
15th ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, ser. POPL ’88. New York, NY, USA: ACM, 1988, pp.
319–329. [Online]. Available: http://doi.acm.org/10.1145/73560.73588

[28] A. Jangda and U. Bondhugula, “An effective fusion and tile size model
for optimizing image processing pipelines,” in Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’18. New York, NY, USA: ACM, 2018,
pp. 261–275. [Online]. Available: http://doi.acm.org/10.1145/3178487.
3178507

[29] K. Kennedy and K. S. McKinley, “Maximizing loop parallelism and
improving data locality via loop fusion and distribution,” in Proceedings
of the 6th International Workshop on Languages and Compilers for
Parallel Computing. Berlin, Heidelberg: Springer-Verlag, 1993, pp.
301–320.

[30] D. Kim, L. Renganarayanan, D. Rostron, S. Rajopadhye, and M. M.
Strout, “Multi-level tiling: M for the price of one,” in Proceedings
of the 2007 ACM/IEEE Conference on Supercomputing, ser. SC ’07.
New York, NY, USA: ACM, 2007, pp. 51:1–51:12. [Online]. Available:
http://doi.acm.org/10.1145/1362622.1362691

[31] M. Kong and L.-N. Pouchet, “Model-driven transformations for multi-
and many-core cpus,” in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI 2019. New York, NY, USA: Association for Computing

440



Machinery, 2019, pp. 469–484. [Online]. Available: https://doi.org/10.
1145/3314221.3314653

[32] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and
P. Sadayappan, “When polyhedral transformations meet simd code
generation,” in Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI’13.
New York, NY, USA: Association for Computing Machinery, 2013, pp.
127–138. [Online]. Available: https://doi.org/10.1145/2491956.2462187

[33] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Effective automatic parallelization
of stencil computations,” in Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’07. New York, NY, USA: ACM, 2007, pp. 235–244.
[Online]. Available: http://doi.acm.org/10.1145/1250734.1250761

[34] C. Lattner, J. Pienaar, M. Amini, U. Bondhugula, R. Riddle, A. Cohen,
T. Shpeisman, A. Davis, N. Vasilache, and O. Zinenko, “Mlir: A
compiler infrastructure for the end of moore’s law,” arXiv preprint
arXiv:2002.11054, 2020.

[35] C. Leary and T. Wang, “Xla: Tensorflow, compiled,” TensorFlow Dev
Summit, 2017.

[36] H. Liao, J. Tu, J. Xia, and X. Zhou, “Davinci: A scalable architecture
for neural network computing,” in 2019 IEEE Hot Chips 31 Symposium
(HCS). IEEE, 2019, pp. 1–44.

[37] G. Long, J. Yang, K. Zhu, and W. Lin, “Fusionstitching: Deep fusion and
code generation for tensorflow computations on gpus,” arXiv preprint
arXiv:1811.05213, 2018.

[38] K. S. McKinley, S. Carr, and C.-W. Tseng, “Improving data
locality with loop transformations,” ACM Trans. Program. Lang.
Syst., vol. 18, no. 4, pp. 424–453, Jul. 1996. [Online]. Available:
https://doi.org/10.1145/233561.233564

[39] S. Mehta, G. Beeraka, and P.-C. Yew, “Tile size selection revisited,”
ACM Trans. Archit. Code Optim., vol. 10, no. 4, pp. 35:1–35:27, Dec.
2013. [Online]. Available: http://doi.acm.org/10.1145/2541228.2555292

[40] S. Mehta, P.-H. Lin, and P.-C. Yew, “Revisiting loop fusion in the
polyhedral framework,” in Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’14. New York, NY, USA: ACM, 2014, pp. 233–246. [Online].
Available: http://doi.acm.org/10.1145/2555243.2555250

[41] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “Polymage: Automatic
optimization for image processing pipelines,” in Proceedings of
the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’15.
New York, NY, USA: ACM, 2015, pp. 429–443. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694364

[42] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “Polymage
benchmarks,” URL: https://github.com/bondhugula/polymage-
benchmarks (commit d20264ef), 2017.

[43] S. Paris, S. W. Hasinoff, and J. Kautz, “Local laplacian filters:
Edge-aware image processing with a laplacian pyramid,” Commun.
ACM, vol. 58, no. 3, pp. 81–91, Feb. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2723694

[44] S. Paris, P. Kornprobst, and J. Tumblin, Bilateral Filtering. Hanover,
MA, USA: Now Publishers Inc., 2009.

[45] L.-N. Pouchet et al., “Polybench: The polyhedral benchmark suite,”
URL: http://www. cs. ucla. edu/pouchet/software/polybench, 2012.

[46] W. Pugh and D. Wonnacott, “Static analysis of upper and lower
bounds on dependences and parallelism,” ACM Trans. Program. Lang.
Syst., vol. 16, no. 4, pp. 1248–1278, Jul. 1994. [Online]. Available:
http://doi.acm.org/10.1145/183432.183525

[47] B. Qiao, O. Reiche, F. Hannig, and J. Teich, “From loop fusion to
kernel fusion: A domain-specific approach to locality optimization,”
in Proceedings of the 2019 IEEE/ACM International Symposium on
Code Generation and Optimization, ser. CGO 2019. Piscataway,
NJ, USA: IEEE Press, 2019, pp. 242–253. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3314872.3314901

[48] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe, “Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image processing
pipelines,” in Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’13.
New York, NY, USA: ACM, 2013, pp. 519–530. [Online]. Available:
http://doi.acm.org/10.1145/2491956.2462176

[49] S. Rajbhandari, J. Kim, S. Krishnamoorthy, L.-N. Pouchet, F. Rastello,
R. J. Harrison, and P. Sadayappan, “On fusing recursive traversals of k-d

trees,” in Proceedings of the 25th International Conference on Compiler
Construction, ser. CC 2016. New York, NY, USA: ACM, 2016, pp. 152–
162. [Online]. Available: http://doi.acm.org/10.1145/2892208.2892228

[50] P. S. Rawat, C. Hong, M. Ravishankar, V. Grover, L.-N. Pouchet,
A. Rountev, and P. Sadayappan, “Resource conscious reuse-driven
tiling for gpus,” in Proceedings of the 2016 International Conference
on Parallel Architectures and Compilation, ser. PACT ’16. New
York, NY, USA: ACM, 2016, pp. 99–111. [Online]. Available:
http://doi.acm.org/10.1145/2967938.2967967

[51] L. Renganarayanan, D. Kim, M. M. Strout, and S. Rajopadhye,
“Parameterized loop tiling,” ACM Trans. Program. Lang. Syst.,
vol. 34, no. 1, pp. 3:1–3:41, May 2012. [Online]. Available:
http://doi.acm.org/10.1145/2160910.2160912

[52] R. Upadrasta and A. Cohen, “Sub-polyhedral scheduling using
(unit-)two-variable-per-inequality polyhedra,” in Proceedings of the
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’13. New York, NY, USA:
ACM, 2013, pp. 483–496. [Online]. Available: http://doi.acm.org/10.
1145/2429069.2429127

[53] N. Vasilache, C. Bastoul, and A. Cohen, “Polyhedral code generation
in the real world,” in Compiler Construction, ser. CC 2006, A. Mycroft
and A. Zeller, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 185–201.

[54] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. Devito,
W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen, “The next
700 accelerated layers: From mathematical expressions of network
computation graphs to accelerated gpu kernels, automatically,” ACM
Trans. Archit. Code Optim., vol. 16, no. 4, Oct. 2019. [Online].
Available: https://doi.org/10.1145/3355606

[55] A. Venkat, M. Hall, and M. Strout, “Loop and data transformations for
sparse matrix code,” SIGPLAN Not., vol. 50, no. 6, pp. 521–532, Jun.
2015. [Online]. Available: https://doi.org/10.1145/2813885.2738003

[56] S. Verdoolaege, “Isl: An integer set library for the polyhedral
model,” in Proceedings of the Third International Congress Conference
on Mathematical Software, ser. ICMS’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 299–302. [Online]. Available: https:
//doi.org/10.1007/978-3-642-15582-6 49

[57] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez,
C. Tenllado, and F. Catthoor, “Polyhedral parallel code generation
for cuda,” ACM Trans. Archit. Code Optim., vol. 9, no. 4, pp.
54:1–54:23, Jan. 2013. [Online]. Available: http://doi.acm.org/10.1145/
2400682.2400713

[58] J. Xue, Loop tiling for parallelism. Springer Science & Business Media,
2012, vol. 575.

[59] T. Zerrell and J. Bruestle, “Stripe: Tensor compilation via the nested
polyhedral model,” arXiv preprint arXiv:1903.06498, 2019.

[60] J. Zhao and A. Cohen, “Flextended tiles: A flexible extension of
overlapped tiles for polyhedral compilation,” ACM Trans. Archit.
Code Optim., vol. 16, no. 4, Dec. 2019. [Online]. Available:
https://doi.org/10.1145/3369382

[61] J. Zhao, M. Kruse, and A. Cohen, “A polyhedral compilation framework
for loops with dynamic data-dependent bounds,” in Proceedings of the
27th International Conference on Compiler Construction, ser. CC 2018.
New York, NY, USA: Association for Computing Machinery, 2018, pp.
14–24. [Online]. Available: https://doi.org/10.1145/3178372.3179509

[62] X. Zhou, J.-P. Giacalone, M. J. Garzarán, R. H. Kuhn, Y. Ni, and
D. Padua, “Hierarchical overlapped tiling,” in Proc. of the Tenth
Intl. Symp. on Code Generation and Optimization, ser. CGO ’12.
New York, NY, USA: ACM, 2012, pp. 207–218. [Online]. Available:
http://doi.acm.org/10.1145/2259016.2259044

[63] O. Zinenko, S. Verdoolaege, C. Reddy, J. Shirako, T. Grosser, V. Sarkar,
and A. Cohen, “Modeling the conflicting demands of parallelism and
temporal/spatial locality in affine scheduling,” in Proceedings of the 27th
International Conference on Compiler Construction, ser. CC 2018. New
York, NY, USA: ACM, 2018, pp. 3–13.

441


