
Memory Efficient Loss Recovery for Hardware-based
Transport in Datacenter

Yuanwei Lu

USTC & Microsoft Research

Guo Chen

Microsoft Research

Zhenyuan Ruan

USTC & Microsoft Research

Wencong Xiao

BUAA & Microsoft Research

Bojie Li

USTC & Microsoft Research

Jiansong Zhang

Microsoft Research

Yongqiang Xiong

Microsoft Research

Peng Cheng

Microsoft Research

Enhong Chen

USTC

ABSTRACT

Limited by the small on-chip memory, hardware-based trans-

port typically implements go-back-N loss recovery mech-

anism, which costs very few memory but is well-known

to perform inferior even under small packet loss ratio. We

present MELO, an efficient selective retransmission mecha-

nism for hardware-based transport, which consumes only

a constant small memory regardless of the number of con-

current connections. Specifically, MELO employs an archi-

tectural separation between data and meta data storage and

uses a shared bits pool allocation mechanism to reduce meta

data on-chip memory footprint. By only adding in average

23B extra on-chip states for each connection, MELO achieves

up to 14.02x throughput while reduces 99% tail FCT by 3.11x

compared with go-back-N under certain loss ratio.

CCS CONCEPTS

• Networks→ Data center networks;

KEYWORDS

Datacenter networks, Loss recovery, Hardwarememory

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

APNet’17, August 03-04, 2017, Hong Kong, China

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5244-4/17/08. . . $15.00

https://doi.org/10.1145/3106989.3106993

ACM Reference format:

Yuanwei Lu, Guo Chen, Zhenyuan Ruan, Wencong Xiao, Bojie

Li, Jiansong Zhang, Yongqiang Xiong, Peng Cheng, and Enhong

Chen. 2017. Memory Efficient Loss Recovery for Hardware-based

Transport in Datacenter. In Proceedings of APNet’17, Hong Kong,

China, August 03-04, 2017, 7 pages.

https://doi.org/10.1145/3106989.3106993

1 INTRODUCTION

Hardware-based transport protocol is deployed in datacen-

ters at scale recently. On one hand, hardware-based transport

largely frees CPUmeanwhile providing ultra-low latency and

high throughput (e.g., RDMA [3]), thus has been replacing its

software-based counterpart TCP in datacenters [8, 16]. On

the other hand, hardware-based transport has been widely

used for direct communication among multiple hardware

computing endpoints (e.g., LTL for FPGAs [6]), thus enables

cloud-scale heterogeneous computation [6, 15].

To provide reliable transmission, lost packets must be retrans-

mitted in transport. Limited by the small on-chip memory,

existing hardware-based transport protocols implement go-

back-N as their loss recovery scheme [2, 3, 6, 16]. Go-back-N

costs very few memory, but is well-known to perform in-

ferior facing even small packet loss ratio. For example, 1%

loss rate leads to almost zero throughput in RDMA [16] (§ 2).

However, even with PFC [7, 11] enabled, packet loss is still in-

evitable at scale. The loss ratio can often go as high as several

percents [9] due to network failures (e.g. switch bug) [9, 16]

or PFC mis-configurations [10], and usually takes hours or

days to detect and mitigate [9]. In such cases, transport per-

formance is dramatically degraded.

Naturally, a selective retransmission [13] loss recovery can

greatly improve the transport performance in face of packet

APNet’17, August 03-04, 2017, Hong Kong, China Y. Lu et al.

loss. However, unlike software, the limited on-chip resources

in hardware brings several challenges to implement selective

retransmission. First, because applications may have some

assumptions on in-order data delivery, a re-ordering buffer

is required to store loss-induced out-of-order data before

delivering them to applications. The size of the out-of-order

buffer for each connection can be up to several megabytes,

which is too much for hardware on-chip memory. 1 Second,

selective retransmission requires extra meta data structure

at both data receiver and sender to track out-of-order ar-

rived packets. However, a typical meta data structure such

as bitmap [13] can also be as big as several Kbs (assume

1KB MTU) for each connection, which again costs too much

on-chip resource. 2

To address above challenges, we propose MELO, a Memory

Efficient selective LOss recovery mechanism for hardware-

based transport. MELO enables selective retransmission loss

recovery for hardware-based transport with the cost of only

∼20B extra memory for each connection, leveraging the fol-

lowing two techniques:

(1) Architectural separation of data and meta data storage.

MELO buffers packet data in off-chip memory (host mem-

ory or on board DRAM), which has enough space (e.g.,

GBs) to tolerate large out-of-order degree. Meanwhile,

MELO maintains meta data in on-chip memory, which is

fast enough for frequent query and update (e.g., upon ev-

ery packet’s arrival). With well-designed fully-pipelined

logic, MELO can process every packet only using on-chip

information, with no need to wait for accessing data in

off-chip memory.

(2) Shared meta data structure. Observing that the total num-

ber of out-of-order packets in all concurrent connections

equals ingress/egress_bandwidth × RTT, MELO adopts a

shared meta data structure for all connections and dy-

namically allocates memory for each connection to track

out-of-order packets. MELO can track out-of-order pack-

ets for any number of concurrent connections, with the

cost of only a constant memory.

We have implemented MELO in NS3 simulation with DC-

QCN. Our experiments show that MELO achieves 14.02x

application throughput while reduces the 99% tail flow com-

pletion time (FCT) by 3.11x compared with go-back-N when

facing certain loss ratio.

1Considering a 100Gbps RDMA network with 200us [8] RTT, a connection

requires about 2.5MB to store all the out-of-order packets, while the on-chip

memory in total is only several MBs.
2In current hardware-based transport, each connection usually consumes

only hundred of bytes on-chip memory [14]. It would be very undesirable

to double the on-chip memory consumption of each connection just of the

loss recovery meta data.

2 BACKGROUND

2.1 Hardware-based transport

Hardware based transport gains its popularity as it pro-

vides low and stable latency as well as high throughput.

RoCEv2 [3] and LTL [6] are two hardware-based transport

deployed in commodity datacenters [6, 8]. RoCEv2 is im-

plemented in NIC hardware and provides RDMA semantics,

namely READ, WRITE and SEND/RECEIVE to upper-layer

applications. LTL is implemented in reconfigurable hard-

ware, i.e. FPGA, and is used to connect one local FPGA with

a remote FPGA via network. Both RoCEv2 and LTL provide

reliable transmission to upper applications. Thus lost packets

should be retransmitted.

As a piece of hardware, the size of on-chip memory is very

limited, thus there is usually no receive buffer for a connec-

tion. Arrived data are placed directly into application buffer

(e.g. RDMA) or sent to application logic (e.g. LTL). Existing

hardware-based transport such as RDMA and LTL mandate

the order of delivering data to applications. For example, in

RDMA, transaction ordering requires certain inter-message

ordering [1]. And in LTL, each packet should be delivered

to application in sequence increasing order [6]. Thus a re-

ordering buffer is required to re-order the out-of-order ar-

rived data before delivering them to applications.

2.2 The necessity of selective
retransmission

Both RDMA and LTL assume a lossless network provided

by PFC [11]. PFC is a hop by hop in-network flow control

mechanism. With PFC, when a downstream switch detects

that an input queue is exceeding its threshold, it will send a

PAUSE frame to stop the upstream switch which connects

to this input port. PFC can effectively remove congestion

caused packet drops. On top of this lossless network, RDMA

and LTL use go-back-N as their loss recovery mechanism.

Unfortunately, in large scale datacenters, failures and PFC

mis-configuration caused packet losses are inevitable. For

example, C. Guo et al. report a persistent 0.2% silent random

drop which lasts for 2 days [9]. To make things worse, some-

times the loss ratio of some network switch can be up to

2%. Though rare, once happens, the application performance

will be significantly impacted. To quantify the loss impact

on go-back-N, we measure Mellanox CX-3 Pro NIC RDMA

WRITE throughput under various loss ratios on our testbed.

As shown in Fig. 1, application throughput downgrades fast

when loss ratio exceeds 0.01%. When loss ratio reaches 0.1%,

throughput is close to zero. Selective retransmission [13]

can greatly solve the problem, and in this paper, we design

Memory Efficient Loss Recovery for Hardware-based

Transport in Datacenter APNet’17, August 03-04, 2017, Hong Kong, China

 0

 10

 20

 30

 40

1e-5 1e-4 1e-3 1e-2

th
ro

ug
hp

ut
 (G

bp
s)

Loss Ratio

MLNX CX3-Pro write

Figure 1: MLNX CX-3 Pro NIC RDMAWrite tput.
mechanisms to implement selective retransmission in hard-

ware.

2.3 The necessity of memory
efficiency

Unlike software-based transport, hardware-based transport

is implemented completely in hardware. As a piece of hard-

ware, the computing resource is very limited as well as on-

chip memory (e.g., usually only a few MB). As a result, hard-

ware usually puts its local states to off-chip memory and

stores only a small portion of all states in hardware. Then

hardware swaps data between on-chip and off-chip memory

whenever a certain connection failed to find a match in on-

chip memory. However, swapping has a cost, i.e. latency and

PCIe bandwidth. Thus swapping very frequently would sig-

nificant reduce the transport performance [12]. As a result,

to design the loss recovery mechanism for hardware-based

transport, on needs to be very careful not inducing too much

on-chip memory footprint, i.e. be memory efficient.

3 DESIGN

In this section, we first present the overview of MELO, then

wewalk through the details of each design component.

3.1 MELO Overview

MELO implements the selective retransmission similar as in

SACK TCP [13], i.e., only lost packets will be retransmitted.

The system overview of a MELO data receiver is shown in

Fig.2. MELO implements the re-ordering buffer in off-chip

memory while keeps the meta data, i.e. bitmap, in on-chip

memory.

Packet loss is detected by a gap in packet sequence number

(PSN). The data of an out-of-order packet is stored into the

corresponding connection’s re-ordering buffer. The data of

in-order arrived packets is directly delivered to applications.

Meanwhile, the bitmap of the connection will be updated.

Connection 1
states

Connection 2
states

Connection m
states

...

Shared
Bits
Pool

(N bits)

Connection 1
states

ConnectionC ti 22
states

Connection m
states

......

Shared
Bits
Pool

((N bits))

On-Chip Meta Data

Off-Chip Data Re-ordering
buffer

Connection 1
Re-ordering buffer

Connection 2
Re-ordering buffer

......
Connection m

Re-ordering buffer
...

Bitmap Manager

Application Memory

Hardware Transport

Network

Figure 2: System overview of MELO data receiver.

Once a new hole is formed in the bitmap, a Negative ACK

(NACK) will be sent to data sender, which carries most re-

cent three holes in the bitmap. Based on the information

in NACK, sender restores the bitmap at the receiver and re-

transmits those lost packets. If a hole in the bitmap is filled,

a consecutive data will be copied from off-chip memory to

application. The bitmap manager component is responsible

for allocating bits from a shared bits pool to connections.

Once the allocated bits of a connection is not enough to cover

the incoming packet, a new portion of bits will be allocated

from the bits pool. On the contrary, bits will be returned to

the bits pool once they are freed by the connection.

Now we will zoom into each design component for a detailed

description of MELO.

3.2 Design Details

3.2.1 Data and meta data storage separation

MELO stores out-of-order data off-chip due to the limitation

of on-chip memory size. For meta data, MELO chooses to

store them in on-chip memory. If meta data is stored off-chip,

then for each retransmission packet, MELO needs to fetch

the corresponding meta data from off-chip memory in order

to check whether a hole in the bitmap is filled. The fetching

process induces at least 1μs latency, during which processing
pipeline has to stall. Thus MELO stores meta data on-chip

to prevent this from happening.

3.2.2 Off-chip re-ordering buffer

As discussed before, MELO implements a per-connection

data re-ordering buffer in off-chip memory. As off-chip mem-

ory is large in size, usually several GBs, a BDP large of buffer

is allocated to each connection. Each connection records the

base address of its re-ordering buffer in on-chip memory,

called base_addr. Then the data of an out-of-order packet is

APNet’17, August 03-04, 2017, Hong Kong, China Y. Lu et al.

placed into the buffer using PSN as the offset. Along with the

packet data, MELO also stores the application buffer address

to copy to if necessary (e.g. for RDMA, application buffer ad-

dress is required for later data copy), so that when a block of

consecutive data starting from RCV.NXT is received, the on-

chip logic can signal the CPU (e.g. in RDMA) or the data copy

logic in hardware (e.g. in LTL) to copy the data to the correct

application buffer or deliver to application logic.

3.2.3 Bitmap manager

MELO uses a bitmap structure to track out-of-order arrived

packets. The bitmap data structure is put in on-chip memory

to reduce the latency and ease the pipeline implementation.

A naive design of the meta data would require a bitmap

for each connection, each tracks a BDP worth of packets.

As a result, each connection would require about 2.5Kb for

the bitmap. 3. This is about 1.26x of per-connection states

of RoCEv2. 4 If we fix the on-chip die size and maintain a

per-connection bitmap, only 44% of the connections can be

stored on-chip compared with current RoCEv2 NIC design.

This will lead to much more frequent memory swapping

between host and NIC, in turn significantly downgrades the

performance [12]. In order to reduce the memory footprint

of the bitmap, we observe that the total transmission rate

of all connections is bounded by ingress/egress bandwidth,

which is 40Gbps/100Gbps. Thus not all connections bitmap

will be full at the same time. Actually, the total bits required

for all connections are

ingress/egress_bandwidth × RTT. Based on this observation,

MELO uses a shared bits pool instead of per-connection

bitmap, thus only adds a constant bits pool overhead re-

gardless of the amount of concurrent connections. A bitmap

manager module is employed to allocate the shared bits pool

to multiple connections as they demand.

Bits allocation. When designing the bits allocation algo-

rithm, one should use as little on-chip extra management

resources as possible and also make an efficient utilization of

the bits pool. The first thing an allocation algorithm needs

to consider is whether a connection’s bitmap is continuous

in the bits pool or consists of disjoint blocks of bits. For the

former choice, as each connection is very likely to have dif-

ferent bitmap size, it will lead to external fragmentation [5],

i.e. the total free bits in the bits pool can meet the need of an

allocation request but a continuous block cannot be allocated

for the request. In order to allocate all the bits in the bits pool

efficiently, a compaction mechanism should be developed to

compact free bits into larger continous blocks. This however

3We assume a 100Gbps network with 200us RTT and 1KB MTU.
4In Mellanox CX3 Pro NIC, per-connection transport states are stored in a

QPC (Queue Pair Context) data structure (mlx4_qp_context), which is 248

bytes.

would require non-trivial logic and memory resources as a

compaction algorithm has to traverse the bits pool to find

free bits and copy data all the way around. As such, MELO

chooses the latter approach: multiple disjoint blocks of bits

are grouped together to form a connection bitmap.

More specifically, MELO divides the bits pool into multiple

equal sized blocks. A free slots array is employed to track

free bits in the pool, as shown in Fig. 3(b). Each entry in the

array records one block in the bits pool. The array acts as a

stack data structure: bits blocks are allocated from the stack

top and also returned to the stack top, which is pointed to by

avail_ptr. Any entry with index larger than or equal to the

pointer is available for allocation. For the choice of bits block

size, there is a clear tradeoff between internal fragmentation

and management overhead. Larger size leads to higher in-

ternal fragmentation but lower management overhead and

vice versa. MELO chooses 1B as the block size to balance

internal fragmentation and the overhead of management. If

the size of the bits pool is 1024b, MELO sets entry size of

the available array to 8-bit. Then 1Kb extra management

memory is required to store the available array.

Bits block concatenation.A connection’s bitmapmay con-

sists of several bits blocks. MELO concatenates bits blocks via

a linked list structure. As shown in Fig. 3(a), along with each

bits block in the bits pool, there is a pointer points (next_ptr)

to the next entry for a particular bitmap. As shown in Fig. 3(c),

the receiver maintains a start_ptr to indicate the first bits

block of the bitmap.

One potential drawback of the linked list structure is that

it is not efficient for random access to a particular bit, i.e.,

one needs to traverse the lists from the front to find the cor-

responding bits block. Fortunately, in our case, the access

pattern to the bitmap can be not random at all. The incom-

ing packets are either retransmission packets or new data

packets. For new data packets, it needs to access the bitmap

from the end of the linked list. For retransmitted packets,

usually, it will access the bitmap from the beginning to fill

the first hole in bitmap. Access to the middle of the bitmap

will happen only when a previous retransmitted packet is

lost, then later retransmission packets may need to access

the middle of the bitmap to fill holes. However, when a re-

transmitted packet is lost, the connection will eventually

timeout, as a result, all packets starting from the front of the

bimap will be retransmitted again. Thus, it’s safe for MELO

to drop those packets that require access to the middle of

the bitmap. As a result, the linked list will be accessed only

from the front or the end of the linked list. Two pointers,

namely RCV.NXT and RCV.HIGH, are used to mark the front

and end bit, as shown in Fig. 3(c). And a start_ptr and end_ptr

Memory Efficient Loss Recovery for Hardware-based

Transport in Datacenter APNet’17, August 03-04, 2017, Hong Kong, China

block 0

block 1

block i

block N

next_ptr

next_ptr

...

next_ptr

next_ptr

...

... ...

8-bit 8-bit

(a) Bits pool structure.

Allocated

Allocated
avail_ptr

...

Free

...

Free

N slots

8-bit

(b) Available slots array.

RCV.NXT RCV.HIGH

0 1 2 3 4 5 6

block p block qstart_ptr

6 7 87 888888888
Not Used

9-15

(c) Per-connection bitmap view.

Figure 3: Structures for bits pool allocation.

is used to indicate the corresponding bits block RCV.NXT

and RCV.HIGH locates in respectively.

To summarize, to maintain a 1024b bits pool, MELO requires

1024b more data for next_ptr and another 1024b for the avail-

able array. Thus, MELO requires 3Kb in total for bits pool

and its management, which remains constant no matter how

many connections there are.

3.2.4 Selective acknowledgment generation

Whenever a new hole in the bitmap forms, which can be

detected by PSN gap between incoming packets and

RCV.HIGH, the MELO receiver generates a NACK immedi-

ately to the data sender. A NACK carries information about at

most three holes in the bitmap. Similar as in TCP SACK [13],

the most recently information is reflected to data sender,

i.e., holes closest to RCV.HIGH. A MELO NACK contains

three holes at most to provide some redundancy. To further

eliminate the linear search required to find the latest holes,

MELO keeps track of the most three recent holes for each

on-chip connection. And the holes are updated per incoming

packet.

Using information carried in NACK packets, data sender

is able to reconstruct the bitmap at the receiver. A MELO

sender also maintains a bitmap for each connection using the

shared bits pool mechanism. Then data sender does selective

retransmission based on the bitmap. Clearly, the size of the

sender bitmap is no larger than the receiver bitmap, thus

MELO sets the sender bits pool the same size as the receiver

one.

T0 T31

L1 L2 L3L0

40G

100G

32 Leaf Switches

… … … …

...

... ...
10 Servers
Figure 4: Simulation topology.

In summary, if we implement MELO with RoCEv2, for a

network with 1MB BDP (1KB MTU), MELO requires 12B (4B

each, 2B for start and 2B for length) to track bitmap holes, 6B

(3B each) to track RCV.NXT and RCV.HIGH, 2B for start_ptr

and end_ptr. And 6Kb for bits pool at sender and receiver. If

we consider ∼300 concurrent connections [12], in average,

MELO requires an extra of 23B for each connection, which

is 9.1% compared with already existing states (248B).

3.2.5 Discussion

Not enough bits. Sometimes though rare, network RTT can

be extremely large due to PFC pauses or heavy congestion [8].

In this case, our bits pool may not be enough to cover all out-

of-order packets. Other cases like a dropped retransmission

packet may also put pressure on bits pool. Facing such a

condition, MELO will simply drop the packets which failed

to be allocated with bits block. As a result, MELO performs

a go-back-N loss recovery for those packets. As this kind

of condition is rare, MELO still gains good performance for

common cases.

Swapping to/from off-chipmemory. As we discussed be-

fore, the on-chip memory is limited thus it usually acts as

a cache to off-chip memory and only store states of a small

set of all connections. Upon a cache miss, the hardware

chooses a connection to be swapped with the incoming con-

nection whose states are stored off-chip. With bits pool, a

to be swapped out on-chip connection should first return

all the bits blocks allocated to the available array. Then the

to be swapped in off-chip connection will be allocated bits

blocks from the bits pool to cover its bitmap.

4 EVALUATION

Now we use packet-level NS3 simulation to demonstrate

the power and characteristics of MELO. We have integrated

MELO into DCQCN in NS3. 5 Via simulation, we first show

the benefits of MELO, i.e., it can improve flow throughput

as well as tail latency compared with the original go-back-N

mechanism in DCQCN. Then we use targeted experiments

to show MELO’s bits pool management can scale with the

5We thank the authors of DCQCN for providing DCQCN NS3 source code.

APNet’17, August 03-04, 2017, Hong Kong, China Y. Lu et al.

number of connections under different packet loss ratio. And

we also show that CPU overhead required by MELO to do

re-order is low.

Topology: In the following experiment, we use the leaf-

spine topology shown in Fig. 4. It contains 4 spine switches

and 32 leaf switches. Each leaf switch is connected with 10

servers. The inter-switch link is 100Gbps and server to leaf

link is 40Gbps, thus forming a full-bisection network. We set

the base RTT to 16μs , MTU to be 1KB and bits pool size to

be 1Kb, if not explicitly stated.

4.1 Benefits of MELO

4.1.1 Improved throughput

Setup: We choose two servers from Fig. 4 under the same

leaf switch T0. One server sends traffic at full speed to the

other server. We manually configure certain loss rate on

switch T0, then measure the throughput of the connection.

We compare DCQCN with go-back-N and DCQCN with

MELO.

Results: As shown in Fig. 5(a), the throughput of go-back-

N drops quickly as loss ratio increases, which matches the

results we found in our testbed and DCQCN paper [16]. In

contrast, as MELO implements the selective retransmission,

only lost packets will be retransmitted, thus the recovery

overhead is negligible. Specifically, when drop ratio is very

low, e.g. 0.001%, MELO runs at nearly full speed and about

3.37% better than go-back-N. Under 0.1% loss, go-back-N only

runs at 45.6% of the bandwidth, while MELO achieves 2.14x

throughput as go-back-N and runs at 99.9% of the bandwidth.

When loss ratio increases to 1%, MELO can utilize 99.0% of

the bandwidth, and achieves throughput 14.02x as go-back-

N.

4.1.2 Reduced tail latency

Setup: In this experiment, half of the servers act as senders

and each sends RDMA traffic to one of the other half servers

across different leaf switches. We generate traffic with flow

size sampled from the web search workload distribution [4].

We further assume the flows arrives according to a Poisson

process. By controlling the inter-flow arrival time, we gen-

erate traffic with different loads. We configure spine switch

L0 with 1% random drop. We then measure the flow comple-

tion time (FCT) of all flows and use the 99% tail FCT as the

metric.

Results: As shown in Fig. 5(b), MELO significantly reduce

99% tail FCT compared with go-back-N, i.e., 2.11x∼3.11x

reduction across various load, mainly benefited from two as-

pects: 1) It is quicker and more accurate for MELO to detect

 0

 10

 20

 30

 40

1e-5 1e-4 1e-3 1e-2

th
ro

ug
hp

ut
 (G

bp
s)

Loss Ratio

Go-Back-N
MELO

(a) Throughput.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

0.4 0.5 0.6 0.7 0.8

99
pc

tl
la

ta
nc

y
(s

)

Load

Go-Back-N
MELO

(b) 99% tail FCT.

Figure 5: Benefits of MELO.

all the lost packets using SACK, thus MELO can retrans-

mit the lost packets to the receiver more quickly compared

to go-back-N; 2) Unlike MELO, go-back-N incurs a lot of

bandwidth overhead by retransmitting redundant packets

(which actually arrived at the receiver), which increases the

congestion and impairs performance.

4.2 MELO Deepdive

4.2.1 CPU usage

If MELO is implemented with RDMA, the re-ordering buffer

should be implemented in host memory and CPU is required

to copy data from re-ordering buffer to application buffer. In

this case, MELO trades a little CPU for better loss recovery.

Now we use an experiment to quantify the CPU usage for

re-ordering.

Setup: In this experiment, we configure the network band-

width delay product (BDP) to be 512KB (RTT ∼100μs , which
is reported as the 99% latency of a commodity RDMA data-

center by [8]). We simulate the traffic between two servers

sending at full speed under the same leaf and configure the

switch to be lossy. Then we count the CPU cycles to copy

out-of-order data based on the collected packet-level trace.

We use one logic core of an 8-core Intel Xeon E5-2630 v3

2.4GHz CPU. The CPU usage is calculated as the fraction

of one second to finish copying the trace produced within

1s .

Results: From Fig.6(a) shows thatMELO normally consumes

very low CPU when loss rate is moderate (e.g., ∼30% single

CPU core usage on 0.2% loss rate). When the loss ratio is

higher, more packets are out-of-order and need to be copied

from reorder buffer to application. However, the worst case

is bounded to be copying every packet at 40Gbps bandwidth.

This causes 82.2% single CPU core usage, which is very low

compared with the total CPU capacity in modern datacenter

servers (e.g., 32 cores or more). Moreover, the CPU usage

can be largely optimized in the future, by using hardware

to proactively copy data from reorder buffer to application,

instead of using CPU.

Memory Efficient Loss Recovery for Hardware-based

Transport in Datacenter APNet’17, August 03-04, 2017, Hong Kong, China

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0% 0.2% 0.4% 0.6% 0.8% 1.0%

C
PU

 u
sa

ge
 (1

 c
or

e)

Loss Ratio

 BDP=512KB

(a) CPU usage.

 0

 0.2

 0.4

 0.6

 0.8

20 40 60 80 100 120

Bi
ts

 P
oo

l U
til

iz
at

io
n

of connections

drop ratio = 0.1%
drop ratio = 1%
drop ratio = 2%

(b) Bits pool usage.

Figure 6: Micro-benchmarks.

4.2.2 Bits pool usage

Now we use simulation to show that MELO’s bits pool can

cover the most stringent case loss caused out-of-order, i.e.

large BDP and multiple connections.

Setup:We set the network RTT to 200μs , which is the 99.9%

RTT for a commodity RDMA datacenter as reported in [8].

Then one server initiates multiple connections to another

server under a different leaf switch. We configure destination

leaf switch to be lossy. Bits pool usage is measured under

various loss ratio and amount of connections.

Results:As shown in Fig. 6(b), with the same number of con-

current connections, the lower the loss ratio, the lower the

bits pool usage. This is because lower loss ratio leads to less

out-of-order, in turn lower bits pool usage. We also observe

another interesting result that as the number of concurrent

connections increases, the amount of bits required decreases.

The reason is that since all flows sharing the bandwidth,

each flow has a smaller BDP as the number of concurrent

connections grows. As such, a lost packet will lead to less

out-of-order packets in a flow, so the total number of out-

of-order packets is smaller when there are more concurrent

flows. Specifically, with 20 concurrent connections under 2%

loss ratio, the bits pool usage is 65.6%. When there is only

one connection, the bits pool usage is at its peak, namely

96.9%, which stays the same across all loss ratio.

5 CONCLUSION

This paper presents MELO, a memory efficient loss recov-

ery mechanism for hardware-based transport. MELO im-

plements selective retransmission in hardware, thus it is

efficient for loss recovery. MELO only adds a little extra on-

chip memory, thus it is memory efficient. Behind MELO is an

architectural separation of out-of-order data and meta data

storage, i.e. data is stored in off-chip memory while meta

data is stored on-chip. Moreover, a shared bits allocation

mechanism is employed to minimize the on-chip memory

footprint of meta data. MELO can improve both throughput

and tail latency of applications. To our knowledge, MELO

is the first effort to design a memory efficient loss recovery

mechanism for hardware-based transport.

REFERENCES

[1] 2008. InfiniBand architecture volume 1, general specifications, release

1.2.1. InfiniBand Trade Association.

[2] 2010. Supplement to InfiniBand architecture specification volume 1 re-

lease 1.2.2 annex A16: RDMA over converged ethernet (RoCE). InfiniBand

Trade Association.

[3] 2012. Supplement to InfiniBand architecture specification volume 1

release 1.2.2 annex A17: RoCEv2 (IP routable RoCE). InfiniBand Trade

Association.

[4] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra

Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari

Sridharan. 2010. Data Center TCP (DCTCP). In Proceedings of the ACM

SIGCOMM 2010 Conference (SIGCOMM ’10). ACM, New York, NY, USA,

63–74. DOI:https://doi.org/10.1145/1851182.1851192
[5] Remzi H Arpaci-Dusseau and Andrea C Arpaci-Dusseau. 2014. Op-

erating systems: Three easy pieces. Vol. 151. Arpaci-Dusseau Books

Wisconsin.

[6] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat,

Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,

Puneet Kaur, Joo-Young Kim, and others. 2016. A cloud-scale accel-

eration architecture. In Microarchitecture (MICRO), 2016 49th Annual

IEEE/ACM International Symposium on. IEEE, 1–13.

[7] Cisco. 2015. Priority Flow Control: Build Reliable Layer 2 Infrastruc-

ture. (2015). http://www.cisco.com/en/US/prod/collateral/switches/

ps9441/ps9670/white_paper_c11-542809_ns783_Networking_

Solutions_White_Paper.html.

[8] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu

Padhye, andMarina Lipshteyn. 2016. RDMA over Commodity Ethernet

at Scale. In Proceedings of the 2016 conference on ACM SIGCOMM 2016

Conference. ACM, 202–215.

[9] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray

Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, and

others. 2015. Pingmesh: A large-scale system for data center net-

work latency measurement and analysis. ACM SIGCOMM Computer

Communication Review 45, 4 (2015), 139–152.

[10] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo, Kun Tan, Jiten-

dra Padhye, and Kai Chen. 2016. Deadlocks in Datacenter Networks:

Why Do They Form, and How to Avoid Them. In Proceedings of the

15th ACM Workshop on Hot Topics in Networks. ACM, 92–98.

[11] ieee. 2010. 802.1Qbb - Priority-based Flow Control. (2010). http:

//www.ieee802.org/1/pages/802.1bb.html.

[12] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. Design

Guidelines for High Performance RDMA Systems. In 2016 USENIX

Annual Technical Conference (USENIX ATC 16).

[13] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. 1996.

TCP selective acknowledgment options. Technical Report.

[14] Mellanox. 2012. Mellanox EN Driver for Linux. (2012).

http://www.mellanox.com/page/products_dyn?product_family=27&

mtag=linux_driver.

[15] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,

Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-

ers, Gopi Prashanth, Gopal Jan, and others. 2014. A reconfigurable

fabric for accelerating large-scale datacenter services. international

symposium on computer architecture 42, 3 (2014), 13–24.

[16] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina

Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-

hamad Haj Yahia, and Ming Zhang. 2015. Congestion control for

large-scale RDMA deployments. In ACM SIGCOMM Computer Com-

munication Review, Vol. 45. ACM, 523–536.

