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Abstract

ABSTRACT
This thesis aims to explore high performance data center systems with pro-

grammable NICs. Besides accelerating network virtualization, programmable NICs can

also accelerate network functions, data structures and operating systems. For this pur-

pose, this thesis proposes a system that uses FPGA-based programmable NIC for full

stack acceleration of compute, network and in-memory storage nodes in cloud data cen-

ters.

First, this thesis proposes to accelerate virtualized network functions in the cloud

with programmable NICs. This thesis proposes ClickNP, the first FPGA acceler-

ated network function processing platform on commodity servers with high flexibility

and high performance. To simplify FPGA programming, this thesis designs a C-like

ClickNP language and a modular programming model, and also develops optimiza-

tion techniques to fully exploit the massive parallelism inside FPGA. The ClickNP

tool-chain integrates with multiple commercial high-level synthesis tools. Based on

ClickNP, this thesis designs and implements more than 200 network elements, and con-

structs various network functions using the elements. Compared to CPU-based soft-

ware network functions, ClickNP improves throughput by 10 times and reduces latency

to 1/10.

Secondly, this thesis proposes the acceleration of remote data structure access

using programmable NICs. The thesis designs and implements KV-Direct, a high-

performance in-memory key-value storage system based on the ClickNP programming

framework. KV-Direct bypasses the server-side CPU and uses programmable NICs to

directly access data structures in the remote host memory via PCIe. KV-Direct extends

the memory semantics of one-sided RDMA to key-value semantics, thereby avoiding

communication and synchronization overheads in data structure operations. KV-Direct

further leverages the reconfigurability of FPGA to enable users to implement more com-

plex data structures. To address the performance challenge of limited PCIe bandwidth

and high latency between NIC and host memory, this thesis designs a series of op-

timizations including a hash table, memory allocator, out-of-order execution engine,

load balancing, caching, and vector operations. KV-Direct achieves a power efficiency

ten times greater than that of a CPU and microsecond-scale latency. KV-Direct is the

first general key-value storage system to achieve a performance of 1 billion operations

per second on a single server.
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Abstract

Finally, this dissertation proposes a co-design of programmable NICs and user-

space libraries to provide kernel-bypass socket communication primitives for applica-

tions. The dissertation designs and implements SocksDirect, a user-space socket system

that is fully compatible with existing applications, achieves throughput and latency that

are close to hardware limits, has scalable performance for multi-cores, and maintains

high performance with many concurrent connections. SocksDirect uses shared memory

and RDMA for intra-host and inter-host communication, respectively. To support many

concurrent connections, SocksDirect implements an RDMA programmable NIC based

on KV-Direct. SocksDirect further removes overheads such as thread synchronization,

buffer management, large payload copying, and process wakeup. Compared to Linux,

SocksDirect improves throughput by 7 to 20 times, reduces latency to 1/17 to 1/35, and

reduces the HTTP latency of web servers to 1/5.5.

Key Words: Data Center; Programmable NIC; FPGA; Network Function Virtualiza-

tion; Key-Value Store; Networking Stack
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Research Background and Significance

Data centers serve as the ”brains” of the Internet, providing the infrastructure nec-

essary for storing vast amounts of data, performing large-scale computations, and of-

fering Internet services. In the first decade of the 21st century, data centers primarily

processed tasks that were easily parallelizable, such as websites and search engines. The

rapid improvement in the performance of general-purpose processors also made the ad-

vantages of dedicated hardware less apparent. Consequently, Internet data centers often

employed a large number of low-cost standard servers for construction [1] .

In the past decade, the emergence of big data and artificial intelligence has altered

the application load characteristics of data centers. On one hand, big data processing

and machine learning workloads demand high computational power. However, due to

the slowdown of Moore’s Law and the end of Dennard’s scaling law, the increase in

frequency and number of multi-cores of general-purpose processors has been limited

by the power wall in the past decade [2] . Therefore, the ”free lunch” of general-purpose

processor performance improvement has ended, ushering in the era of architectural in-

novation. Customized hardware such as GPUs, FPGAs, and TPUs [3] are now widely

deployed in data centers. On the other hand, big data processing and machine learning

workloads require multiple nodes to work closely together, necessitating high inter-node

communication bandwidth and low latency. To efficiently provide message passing and

shared memory inter-process communication paradigms for distributed systems, effi-

cient message passing needs to be implemented in the network, and high-performance

shared data structure storage needs to be implemented at the storage level. Therefore, in

the past decade, data center networks have evolved from 1 Gbps to 40 Gbps, and there is

a trend to evolve to 100 Gbps. Dedicated interconnects between customized hardware

are also becoming a trend.

At the same time, the operational mode of data centers is also undergoing a trans-

formation towards cloudification. A handful of cloud manufacturers are gradually cen-

tralizing the computing power of data centers, each possessing millions of servers. Due

to the large scale of cloud data centers, cloud service providers can, on one hand, amor-

tize the design and tape-out costs of servers, boards, and even chips, and on the other

hand, improve performance indicators and reduce costs through software optimization,

thereby achieving significant economic benefits.

1



Chapter 1 Introduction

The cloudification of data centers means that a few cloud manufacturers maintain

the basic infrastructure of data centers, and IT companies only need to rent computing,

network, storage, and other resources from these cloud manufacturers as needed. In

cloud data centers, different tenants share a vast pool of computing, storage, and network

resources. To achieve resource sharing and performance isolation, data centers require

virtualized computing, storage, and networks.

As shown in Figure 1.1, under the Infrastructure as a Service (IaaS) cloud service

model, computing nodes need to provide services such as virtual networks, virtual cloud

storage, and virtual local storage, while the actual network and cloud storage resources

are located on independent network nodes and storage nodes. The virtual network and

storage services on the computing nodes virtualize the physically dispersed network

and storage resources in the data center into logically unified resources (”multi-virtual

one”), akin to a large-scale computer [4] .

Network and storage nodes not only need to share physical resources with vir-

tual machines of different tenants on multiple computing nodes (”one virtual multi”),

but also need to provide data processing functions and high-level abstractions. For

instance, network nodes need to provide network functions such as firewalls, load bal-

ancing, encrypted tunnel gateways, and Network Address Translation (NAT)①; storage

nodes need to perform data structure processing to provide high-level abstractions such

as object storage and file system storage, and need to perform replication for disaster

recovery.

In addition to persistent storage, data centers also need to provide memory data

structure storage to support communication in distributed systems②.

Due to the rapid evolution of cloud services, these virtualized network and stor-

age functions also require flexibility, programmability, and debuggability, which are

traditionally often implemented by software running on general-purpose processors.

Besides virtualization overhead, the overhead of traditional operating systems cannot

be overlooked. The software overhead depicted in the shadowed boxes in Figure 1.1

is referred to as the ”data center tax” [1,4-5] . In the era of 1 Gbps networks and me-

chanical hard drives, the CPU overhead and latency introduced by network and storage
①In this article, network function is a proper noun, not referring to network devices such as switches and routers,

but referring to functions in network infrastructure such as firewalls.
②Communication in distributed systems has two paradigms: message passing and shared memory. Message

passing can be directlymapped to network communication. The sharedmemory paradigm ismore developer-friendly,
can support high availability and scalability, and needs to be implemented through message passing in distributed
systems with network interconnection. However, the abstraction level of shared memory is relatively low, so most
distributed systems use shared data structure storage to replace shared memory.
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Figure 1.1 Virtualized data center architecture.

virtualization as well as the operating system’s network and storage protocol stack were

acceptable. With the trend of increasingly faster networks, storage, and customized

computing hardware, the data center tax not only squanders significant CPU resources

but also hinders applications from fully exploiting the low latency and high throughput

of hardware [6] . For instance, as will be elucidated in Chapter 4, computing nodes need

to allocate a portion of the CPU cores specifically for implementing network and storage

virtualization, and these cores will not be available for sale to customers. Additionally,

virtual networks and network functions will add tens to thousands of microseconds of la-

tency. For comparison, the latency of the data center network itself is only a few to tens

of microseconds, and the latency added by virtualization is higher than the latency of

the network itself. Chapter 5 will explain that the throughput of software-implemented

shared memory data structure storage is far from that of memory hardware. Chapter 6

will explain that applications generally use the socket primitives in the operating system

for communication. For communication-intensive applications such as web servers, the

operating system occupies a large part of the CPU time; moreover, the socket primitives

implemented by the operating system have an order of magnitude higher latency than

the Remote Direct Memory Access (RDMA) primitives provided by the hardware.

In summary, it is of great importance to reduce the ”data center tax” through full-

stack optimization combining hardware and software for the performance and cost of

modern data centers, which is also the subject of this paper.

1.2 Research Status at Home and Abroad

In order to reduce the overhead of the ”data center tax”, the academic and industrial

communities have proposed many solutions, which can be roughly divided into three

categories: optimizing software, utilizing new commercial hardware, and designing
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new hardware.

1.2.1 Optimizing Software

Traditional network functions are implemented by dedicated devices deployed in

specific locations in the data center. These dedicated network function devices are not

only expensive, but also not flexible enough to support multi-tenancy in cloud services.

Therefore, cloud service providers have deployed software-implemented virtual net-

work functions. For instance, Ananta [7] is a software load balancer deployed in Mi-

crosoft data centers, used to provide cloud-scale load balancing services. Works such

as RouteBricks [8] demonstrate that the speed of each server forwarding packets based

on multi-core x86 CPUs can reach 10 Gbps, and capacity can be expanded by multi-

core and building more network node clusters. Although software-implemented virtual

switches and network functions can use a larger number of CPU cores and larger net-

work node clusters to support higher performance, doing so will increase considerable

asset and operating costs [7,9] . The profitability of cloud service providers in IaaS busi-

ness is the difference between the price paid by customers for virtual machines and the

cost of hosting virtual machines. Since the asset and operating costs of each server are

basically determined at the time of deployment, the best way to reduce the cost of host-

ing virtual machines is to package more customer virtual machines on each computing

node server and reduce the number of servers for network and storage nodes. Currently,

the price of a physical CPU core (2 hyperthreads, i.e., 2 vCPUs) is about $0.1 per hour,

i.e., the maximum potential income is about $900 per year [10] . In data centers, servers

usually serve for 3 to 5 years, so the highest price of a physical CPU core during the

server’s life cycle can reach $4500 [10] . Even considering that some CPU cores are not

sold out, and the cloud often offers discounts to large customers, compared with ded-

icated hardware, it is quite expensive to allocate a physical CPU core specifically for

virtual networks.

Most applications access the network through the socket interface provided by the

operating system. The sockets of existing operating systems such as Linux were de-

signed for low-speed networks decades ago and have high overhead in today’s high-

throughput, low-latency data center networks. In recent years, a lot of work has been

devoted to providing high-performance sockets. The first type of work is to optimize

the TCP/IP network protocol stack of the operating system kernel. However, a lot of

kernel overhead still exists, which will be discussed in detail in Chapter 6. The sec-

ond type of work completely bypasses the kernel TCP/IP protocol stack and imple-
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ments TCP/IP in user space, known as user-mode protocol stacks. In this category,

some works [11-12] propose new operating system architectures, using virtualization to

ensure security and isolation. In addition to these new operating system architectures,

many user-mode protocol stacks utilize high-performance packet I/O frameworks that

already exist on Linux [13-15] . Among them, some user-mode protocol stacks [16-19] be-

lieve that the Linux socket API is the root of performance overhead, and thus propose

newAPIs, which require modifying applications. Most API changes aim to support zero

copy. Some other systems [20-21] go further, believing that the abstraction level of sock-

ets is too low, and applications should use a higher-level remote procedure call (RPC)

interface. Since sockets are widely used, it is not realistic to require applications to

modify the interface in many cases. Therefore, some systems in the industry [22-24] and

academia [25] propose user-mode TCP/IP protocol stacks that comply with the standard

socket API. These user-mode protocol stacks provide better performance than Linux,

but they are still not close to the performance limit of hardware. Currently, the perfor-

mance benchmark for host-to-host communication in data center networks is Remote

Direct Memory Access (RDMA), and the most efficient method for inter-process com-

munication within a host is shared memory. The host-to-host communication latency of

these user-mode protocol stacks is an order of magnitude higher than RDMA, and the

intra-host communication latency is one to two orders of magnitude higher than shared

memory.

As a fundamental infrastructure for communication and storage in distributed sys-

tems, the exploration and advancement of Key-Value Storage systems have persistently

been a primary concern in the academic and industrial systems community. The per-

formance of early memory key-value storage systems [26] was not satisfactory. Given

that distributed systems are interconnected through networks, the user clients and stor-

age servers of key-value storage systems also need to communicate through networks,

introducing the overhead of socket network protocol stacks and network virtualization

discussed earlier.

To eliminate the overhead of the operating system kernel, recent key-value stor-

age systems [27-31] employ high-performance network packet processing frameworks,

poll network packets from network cards, and utilize the aforementioned user-mode

lightweight network protocol stacks to process them. However, even without consider-

ing the overhead of the network, the cost of key-value storage systems for data structure

processing is also high.

To reduce computing costs, a series of works [32-34] optimize locks, caches, hashes,
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and memory allocation algorithms. To reduce the inter-core synchronization overhead

of multiple CPU cores processing the same key, a more efficient method is for a fixed

CPU core to handle each key’s write operations [30] .

However, due to the limitations of CPU parallelism, as will be discussed in Chapter

5, even if optimized to the extreme, each CPU core can only handle about 5 million

key-value operation requests per second, far lower than the hardware performance that

memory random access can provide.

In addition, the keys in real-world workloads often follow a long-tail distribution,

that is, a small number of keys are accessed very frequently, and most keys are not

frequently accessed. Under long-tail distribution loads, because the same key is always

mapped to the same CPU core, it will lead to load imbalance among CPU cores [30] .

1.2.2 Utilizing New Commercial Hardware

Due to the pressing performance demands of large-scale web services, big data

processing, machine learning, and other computing and networking applications, com-

puting acceleration devices such as Graphics Processing Units (GPUs) and network

acceleration technologies such as Remote Direct Memory Access (RDMA) [35] are in-

creasingly being deployed in data centers.

To speed up virtual networks and network functions, previous research has sug-

gested the use of GPUs [36] , Network Processors (NPs) [37-38] , and hardware network

switches① [9] . GPUs were initially used primarily for graphics processing, but in recent

years have been extended to other applications with massive data parallelism. GPUs are

suitable for batch operations, but batch operations can lead to high latency. The history

of network processors can be traced back to network switches of the 1990s. Network

processors consist of a large number of embedded processor cores, each with limited

processing power, and stateful connections are usually handled by fixed processor cores,

thus limiting the throughput of a single connection. The main problem with hardware

network switches is their lack of flexibility and insufficient lookup table capacity [9] .

To reduce the overhead of operating system communication primitives, a series of

work has offloaded ② part of the operating system network protocol stack to network

card hardware. The TCP Offload Engine (TOE) [39] offloads part or all of the TCP/IP

protocol stack to the network card. However, due to the rapid growth of general-purpose
①In this paper, the term switch is used interchangeably with router, and the term switch is commonly used in data

center-related literature to refer to network interconnection devices.
②In this paper, offload is a term that refers to implementing functions that are implemented in software on the

host CPU using hardware other than the host CPU.
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processor performance according to Moore’s Law, the performance advantages of these

dedicated hardware are limited and have only been successful in dedicated fields. The

commercially successful TCP offload functions are mostly stateless offloads①, such as

offloading of TCP checksums. Infiniband [35] technology designed a new set of com-

munication primitives, transport layer protocols, network layer protocols, and physical

transmission media. The communication primitives and transport layer protocols are

known as Remote Direct Memory Access (RDMA). Infiniband implements the entire

network protocol stack in hardware, achieving high throughput and low latency, and

is widely used in the field of high-performance computing. Since the transport layer

needs to maintain the state of each connection to implement congestion control, packet

retransmission, out-of-order rearrangement, etc., Infiniband is a stateful offload. In re-

cent years, due to the hardware trends and application requirements of data centers, the

story of stateful offload has begun to revive [40] . RDMA based on Infiniband technol-

ogy is widely deployed in data centers [41] . In order to be compatible with the existing

Ethernet in data centers, data centers do not use Infiniband physical layer networks, but

strip the RDMA primitives and transport layer protocols from the Infiniband technol-

ogy stack, encapsulate RDMA transport layer packets in UDP/IP packets, and transmit

them through Ethernet, which is called RoCEv2 [42] . Compared with the software-based

TCP/IP network protocol stack, RDMA uses hardware offloading to provide ultra-low

latency and near-zero CPU overhead.

RDMA communication primitives significantly differ from the socket communi-

cation primitives typically used by applications. RDMA is message-based, whereas

sockets are stream-based. RDMA necessitates applications to explicitly register and

manage send and receive buffers. It also requires applications to manage send, receive,

and event queues, and to timely send flow control notifications to the network card.

RDMA offers two types of communication primitives. The first type is two-sided oper-

ations, similar to sockets, where the sender calls send and the receiver calls recv. Unlike

sockets, the RDMA receiver application needs to predeclare the messages to be received

and prepare the receive buffer for the network card. The other type is one-sided oper-

ations, which provide shared memory primitives, i.e., direct read and write of remote

memory, or atomic operations on remote memory. Consequently, RDMA program-

ming is considerably more complex than socket programming. An example program

that sends and receives with sockets requires only a few dozen lines of code, while the

same functionality with RDMA requires hundreds of lines of code. To enable socket
①Stateless means that the internal storage of the network card is read-only during packet processing.
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Figure 1.2 Architecture of key-value storage systems. Lines represent data paths. A key-
value operation (thin line) may require multiple address-based memory accesses (thick line).
The box with a black background indicates where key-value data structure processing occurs.

applications to use RDMA, works like RSocket [43-45] convert socket operations into

RDMA primitives. They have similar designs, with RSocket being the most actively

developed and the de facto standard for converting sockets to RDMA. However, the

performance and compatibility of RSocket are not satisfactory. Chapter 6 will propose

a socket system that is compatible with existing applications and can fully utilize the

performance of RDMA network cards.

In addition to network communication between hosts, inter-process communica-

tion within a host is also crucial. Some work [11-12,43] allows inter-process communica-

tion within a host to bypass the RDMA network card. However, due to the limitations

of the PCIe bus, the latency and throughput of the RDMA network card are much worse

than the shared memory within the host. Therefore, Chapter 6 uses shared memory to

implement inter-process communication within the host.

To enhance the performance of key-value storage systems, recent re-

search [46,46-47,47] has utilized the hardware-based network protocol stack of the

RDMA network card. This approach uses bilateral RDMA as the remote procedure

call mechanism between the key-value storage client and server, thereby significantly

increasing per-core throughput and reducing latency, as illustrated in Figure 1.2a.

Although these studies have further reduced the overhead of network communication,

as discussed in Section 1.2.1, these systems still rely on the server-side CPU for data

structure processing, which hampers performance.

An alternative strategy is to employ unilateral RDMA, which shifts the data struc-

ture processing of the server-side CPU to the client, as shown in Figure 1.2b. The client

initiates read and write requests to the server-side shared memory via unilateral RDMA,

and the server-side network card directly accesses the memory without involving the

CPU. However, using shared memory mode to access data structures often necessitates

multiple network round trips (for instance, querying the index first and then accessing

the data), which increases access latency and consumes network bandwidth. Moreover,
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this mode is not suitable for write-intensive workloads. When multiple clients attempt

to manipulate the same data structure (for example, allocating memory or modifying the

same key-value pair), they must lock or synchronize between clients, which introduces

additional latency and bandwidth overhead.

1.2.3 Designing New Hardware

As the performance improvement of general-purpose processors has hit a wall,

major cloud service providers have started to explore the use of custom hardware to

reduce the ”data center tax”. This means shifting the overhead of data center virtualiza-

tion, operating systems, and high-level abstractions from general-purpose processors to

custom hardware. The use of custom hardware is not about implementing existing soft-

ware in hardware as it is, but rather refactoring existing software, dividing it into a data

plane and a control plane, optimizing the data plane and implementing it in hardware,

and leaving the control plane in software. Although the solution using new hardware

has higher performance, it requires not only the assets and operating costs of new hard-

ware, but also the development costs of software and hardware co-design, which are

often higher than the one-time research and development (Non-Recurring Engineering,

NRE) cost of simply optimizing software. In addition, compared to developing and

testing software, designing, verifying, and mass-producing new hardware requires a

longer R&D cycle. Programmable hardware has a certain degree of flexibility, but it

is limited compared to general-purpose processors, so it requires a certain foresight of

future data center application loads and infrastructure. Therefore, not all software is

suitable for hardware acceleration, and it is necessary to weigh multiple factors such as

cost, benefit, R&D cycle, and flexibility. Due to the massive scale of cloud services,

the overhead of the ”data center tax” is also widespread and significant, so it is worth

designing programmable hardware for acceleration.

To minimize the CPU cores used for virtual networks on computing nodes, cloud

service providers, represented by Microsoft Azure, have deployed a programmable

network card on each server in the data center to accelerate virtual networks [10] . To

provide high performance while maintaining a certain degree of programmability and

flexibility, the industry has proposed programmable network card architectures such as

dedicated chips (ASIC), network processors (Network Processor), multi-core general-

purpose processor system-on-chip (SoC), and field-programmable gate arrays (FPGA),

which will be discussed in detail in Section 2.3. FPGA achieves a balance between

performance and flexibility, so Microsoft uses an FPGA-based programmable network
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card [48] .

FPGAs have been extensively utilized in the implementation of network routers

and switches. However, FPGAs are typically programmed in hardware description lan-

guages such as Verilog and VHDL. As is widely recognized, hardware description lan-

guages are challenging to debug, write, and modify, which presents a significant ob-

stacle for software personnel to utilize FPGAs. To enhance the development efficiency

of FPGAs, FPGA manufacturers offer high-level synthesis (HLS) tools [49-50] capable

of compiling restricted C code into hardware modules. However, these tools merely

supplement the hardware development toolchain. Programmers still need to manually

insert the hardware modules generated from C language into the hardware descrip-

tion language project, and they must handle the communication between the FPGA

and the host CPU themselves. The academic and industrial communities have pro-

posed efficient hardware development languages such as Bluespec [51] , Lime [52] , and

Chisel [53] [54-56] , but these require developers to possess substantial hardware design

knowledge. High-level synthesis tools and efficient hardware development languages

can enhance the work efficiency of hardware developers, but they are still insufficient

for software developers to utilize FPGAs.

In recent years, to enable software developers to use FPGA, FPGA manufacturers

have proposed OpenCL-based programming toolchains [57-58] , providing a GPU-like

programming model. Software developers can offload kernels written in OpenCL lan-

guage to FPGA. However, in this method, multiple parallelly executing kernels need

to communicate through shared memory on the board, and the throughput and latency

of DRAM shared memory on FPGA are not ideal, and shared memory can become a

communication bottleneck. Secondly, the communication model between FPGA and

CPU is similar to the GPU’s batch processing model, which results in higher process-

ing latency (about 1 millisecond), which is not suitable for network packet processing

that requires microsecond-level latency. Chapter 4 of this paper will propose a mod-

ular FPGA programming framework that is available to software developers and has

high performance for network packet processing. Based on this, Chapter 5 will use

programmable network cards to extend the shared memory read and write primitives

of RDMA to key-value operation primitives, and use programmable network cards to

implement high-throughput, low-latency memory key-value storage.
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1.3 Research Content and Contributions of This Paper

This paper aims to explore high-performance data center systems that are con-

structed on programmable network cards. It presents a system that enhances the full

stack of computing, networking, and storage nodes in cloud computing data centers,

utilizing FPGA programmable network cards. As illustrated in Figure 1.3, by replac-

ing the standard network cards on the computing, networking, and storage nodes with

programmable network cards, this paper implements virtual network cards and virtual

networks, virtual local storage and cloud storage, and lightweight user-state runtime

libraries on the computing nodes. Furthermore, the integration of hardware transport

protocol communication primitives supplants the software virtualization services and

operating system network protocol stack in Figure 1.1. This paper also implements the

virtual network functions of network nodes and the memory data structure processing

of storage nodes based on the concept of separating the data plane and the control plane,

enhances the data plane performance with programmable network cards, and retains the

flexibility of the original software control plane.

Figure 1.3 Overall architecture of the data center system based on programmable network
cards.

Firstly, this paper proposes to accelerate the virtual network functions in cloud

computing with programmable network cards. It introduces the first high-flexibility,

high-performance network function processing platform ClickNP, accelerated by FPGA

in commercial servers. It is well known that FPGA programming is not user-friendly for

software engineers. To simplify FPGA programming, a C-like ClickNP language and a

modular programming model are designed, and a series of optimization techniques are

developed to fully exploit the massive parallelism of FPGA. The ClickNP development

toolchain is implemented, which can be integrated with various commercial high-level
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synthesis tools. More than 200 network elements are designed and implemented based

on ClickNP, and these elements are used to construct various network functions. Com-

pared with CPU-based software network functions, ClickNP’s throughput is increased

by 10 times, and the latency is reduced to 1/10; and it has negligible CPU overhead,

which can save 20% of CPU cores for each computing node in cloud computing.

Secondly, this paper presents a method to accelerate access to remote data struc-

tures using programmable network cards. Key-value storage, a fundamental data struc-

ture often used, plays a crucial role in numerous distributed systems within data centers.

A high-performance memory key-value storage system, KV-Direct, is developed based

on the ClickNP programming framework. This system bypasses the server-side CPU

and utilizes programmable network cards to directly access the host memory via PCIe.

The memory operation semantics of one-sided RDMA are extended to key-value op-

eration semantics, addressing the high communication and synchronization overhead

when one-sided RDMA operates data structures. The reconfigurable feature of FPGA

is also utilized, allowing users to implement more complex data structures. To address

the performance challenges of lower PCIe bandwidth and higher latency between the

network card and the host memory, a series of performance optimizations are employed,

such as hash tables, memory allocators, out-of-order execution engines, load balancing

and caching, vector operations, etc. These optimizations enable 10 times the energy

efficiency of the CPU and microsecond-level latency, and for the first time, single-

machine performance reaches 1 billion operations per second in a general key-value

storage system.

Lastly, this paper presents a method that integrates programmable network cards

and user-state runtime libraries to provide system primitives for applications, thereby

bypassing the operating system kernel. The socket, the most commonly used commu-

nication primitive provided by the operating system, is redesigned and implemented in

a user-state socket system, SocksDirect. This system is fully compatible with existing

applications, can achieve throughput and latency close to hardware limits, has scalable

multi-core performance, and maintains high performance under high concurrent loads.

Intra-host and inter-host communications are implemented using shared memory and

RDMA respectively. To support a high number of concurrent connections, an RDMA

programmable network card is implemented based on KV-Direct. By eliminating a se-

ries of overheads such as inter-thread synchronization, buffer management, large data

copying, process awakening, etc., SocksDirect increases the throughput by 7 to 20 times

compared to Linux, reduces the latency to 1/17 to 1/35, and reduces the HTTP latency
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of the web server to 1/5.5.

1.4 Arrangement of Thesis Structure

The structure of this thesis is organized as follows: Chapter 1 serves as the in-

troduction. Chapter 2 presents the development trends of data centers, emphasizes the

needs and opportunities for software and hardware co-optimization in data centers, dis-

cusses the architecture of programmable network cards, and reviews the application of

programmable network cards in data centers. Chapter 3 proposes a data center system

architecture that is based on programmable network cards. Chapter 4 is the network

function acceleration section, suggesting the acceleration of virtual network functions

in cloud computing using programmable network cards. To simplify FPGA program-

ming, the first modular FPGA programming framework ClickNP, which is suitable for

high-speed network packet processing and based on high-level languages, is proposed.

Chapter 5 is the data structure acceleration section, suggesting the acceleration of re-

mote data structure access using programmable network cards, and designing and im-

plementing a high-performance memory key-value storage system KV-Direct. Chapter

6 is the operating system acceleration section, suggesting a method of integrating pro-

grammable network cards and user-state runtime libraries to provide system primitives

for applications, and designing and implementing a user-state socket system SocksDi-

rect. Chapter 7 summarizes the entire text and anticipates future research directions.
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Chapter 2 Introduction to Data Centers and
Programmable Network Cards

This chapter introduces the background and related work of the entire text. Figure

2.1 outlines the logical structure of this chapter. Section 1 introduces the four devel-

opment trends of data centers, namely resource virtualization, distributed computing,

customized computing, and fine-grained computing, starting from the application re-

quirements, hardware, and operation modes of data centers. These trends have given

birth to two major infrastructures: high-performance data center networks and memory

data structure storage. Section 2 analyzes the performance challenges of data centers

from the four aspects of virtual networks, network functions, operating systems, and

data structure processing, namely the so-called ”data center tax”. Programmable net-

work cards are customized hardware used to reduce the ”data center tax”. Section 3

compares the four architectures of programmable network cards based on dedicated

chips, network processors, general-purpose processors, and FPGAs. Section 4 surveys

the deployment of programmable network cards in data centers such asMicrosoft Azure

and Amazon AWS.

Figure 2.1 Logical structure of this chapter.

2.1 Development Trends of Data Centers

The history of data centers can be traced back to the computer rooms of early com-

puters in the 1940s. Early computers were large precision instruments with high envi-

ronmental requirements, requiring professional maintenance, and often running confi-

dential military tasks, so they needed strictly controlled data centers for protection. With

the development of computer technology, more and more users and businesses need to
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use computers. Since early computers were still very expensive, a company or research

institution often had only a few computers, and users connected to the computers in the

data center through terminals, forming the prototype of the client-server architecture.

From the 1980s to the 1990s, the evolution of hardware, guided by Moore’s Law,

and advancements in operating system software, spurred the robust development of

personal computers (PCs). These PCs, while more affordable, had lower computing and

storage capabilities and less stability. Concurrently, mainframes and minicomputers,

which were derivatives of early computers, remained the preferred choice for businesses

due to their superior computing and storage capabilities, higher stability, albeit at a

higher cost. These costly mainframes required dedicated data centers and professional

maintenance.

As the 20th century drew to a close, the rapid expansion of the Internet, coupled

with its ”free” business model and the swift increase in data volume and user num-

bers, rendered traditional mainframes and minicomputers too expensive and inflexible

to accommodate rapidly expanding businesses. Consequently, an increasing number

of Internet companies began to utilize standard servers, similar in structure to PCs, to

establish Internet services, thereby creating distributed systems. The proliferation of

standard servers led to the continuous expansion of data centers. These servers necessi-

tated ample room space, high-speed and stable Internet connections, stable temperature

and humidity, and cheaper electricity to minimize energy costs. As a result, the con-

struction of data centers gradually became a specialized industry, and the term ”data

center” became standardized.

Around 2010, as Internet companies sprouted rapidly, there was a growing demand

for highly scalable computing, storage, and network resources. Cloud computing, which

offers on-demand rental of computing, storage, and network resources, emerged as an

increasingly popular business model. More and more businesses began migrating their

traditional IT systems to cloud computing platforms to reduce operation and mainte-

nance costs. Compared to Internet data centers, cloud data centers offer a wider range

of application types and user interaction methods, higher network interconnection per-

formance, more customized hardware, and better resource reuse. The following four

sections will discuss the four development trends of cloud data centers: resource virtu-

alization, distributed computing, customized computing, and fine-grained computing.
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2.1.1 Resource Virtualization

Early computers and mainframes were costly. To allow multiple tasks to fully

utilize computing and storage resources, the concept of virtualization was introduced.

The time-sharing systems of the 1950s and 1960s [59-60] implemented the time-sharing

reuse of hardware by multiple user tasks, evolving into the precursors of modern op-

erating systems such as UNIX in the 1970s [61] . From the 1970s to the 1990s, Virtual

Machine Monitors (VMMs, or hypervisors) further implemented the time-sharing reuse

of hardware by multiple operating systems [62-63] , laying the technical groundwork for

the development of cloud computing.

In the first decade of the 21st century, the development of the Internet led to an

increasing number of companies needing to provide 24-hour network services, and In-

ternet Data Center (IDC) hosting services gradually emerged. However, IDC hosting

requires customers to purchase server hardware in advance and requires maintenance

by operations personnel, resulting in high capital expenditure (capex) and operational

expenditure (opex). Many companies’ network services have high seasonality (such as

Amazon’s Black Friday promotion), so a large amount of computing resources are idle

during off-peak times. On the other hand, the rapid expansion of data and user scale

puts time pressure on hardware purchasing and IDC site selection. To this end, virtual

machine hosting services provide on-demand virtual machine resources, enabling the

slicing of server resources by CPU cores and time-sharing reuse among different cus-

tomers, and facilitating management and scheduling by internal operations personnel.

Cloud computing is an upgraded version of virtual machine hosting services, with

the hallmark change being the decoupling of computing and storage. Virtual host host-

ing services slice the computing and storage resources on a host into multiple virtual

machines. If the host’s hardware or virtualization software (hypervisor) fails, the vir-

tual machine also shuts down, and there is a risk of data loss. In cloud computing, the

storage resources of virtual machines have multiple replicas in distributed storage sys-

tems, so when a computing node fails, the virtual machine can be restarted from other

computing nodes, and the failure of storage nodes is generally transparent to customers.

The decoupling of computing and storage not only greatly improves service availability

and data security, but also facilitates the upgrading of virtualization software and hot

migration of virtual machines.

In addition to sharing hardware resources with other companies, IT companies uti-

lize cloud computing for virtualization for another purpose, specifically to repurpose
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hardware infrastructure to provide different quality of service guarantees for various

types of services within the company. For instance, web front-end servers respond-

ing to user requests, online transaction processing (OLTP) databases, online machine

learning inference, and so forth, typically require lower latency; offline data processing

(OLAP), data mining, distributed machine learning training, and so on, need to access

massive data, perform a large amount of computation, and require higher throughput.

Low latency and high throughput are somewhat contradictory ①, thus it is necessary to

slice computing, network, storage, and other resources to provide different quality of

service guarantees (Quality of Service, QoS) for applications with different needs.

As introduced in Section 1.1, the customer’s virtual machines in a cloud data cen-

ter are located on computing nodes, while storage services and network services run

on decoupled storage and network nodes. In addition, management nodes are needed

for scheduling and monitoring. As shown in Figure 2.2, a data center is usually com-

posed of computing, network, storage, management, and other nodes, as well as the

interconnection network between nodes.

Figure 2.2 Data center architecture.

2.1.2 Distributed Computing

At the close of the 20th century, search engines bridging information islands signi-

fied the dawn of the Internet era. Search engines are required not only to gather, process,

and index vast amounts of information, but also to respond to a high volume of user in-

formation retrieval requests in real time. Traditional mainframes and enterprise-level

storage are not only expensive, but also incapable of meeting the scalability of massive

information storage and user request processing ②. To address this, Google proposed
①Latency refers to the time difference between the end of processing and the start of processing. Throughput

refers to the number of requests processed per unit of time. Latency and throughput are two important indicators of
system performance. Roughly speaking, throughput equals the number of parallel processing requests divided by
the average latency.
②The scalability of a distributed system refers to the increase in system throughput with the number of nodes.

Ideal scalability is a linear increase in throughput with the number of nodes.
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the construction of scalable data centers using standard commercial servers, employing

software to execute storage partitioning and redundancy, user request distribution, and

to build fault-tolerant systems on relatively unreliable hardware foundations [64-66] , thus

spearheading the wave of large-scale distributed computing.

Workloads such as information retrieval and Web services are relatively straight-

forward to parallelize. There is virtually no correlation between each user request, hence

they can be dispatched to different servers for parallel processing, and increasing the

number of servers can almost achieve a linear increase in system throughput. Given

appropriate indexing, the amount of data required to process each user request is also

minimal, and there is no high demand for communication performance.

With the evolution of search advertising, social networks, and the mobile Internet,

Internet companies have amassed vast amounts of user data. In order to extract knowl-

edge from this massive data, big data began to emerge, giving rise to big data processing

frameworks represented by Hadoop [67] and Spark [68] . For instance, MapReduce [66]

borrowed the concepts of mapping and reduction from functional programming lan-

guages, and proposed a programming framework for large-scale data set parallel pro-

cessing on unreliable hardware clusters. Big data processing typically involves batch

operations, requires access to massive data, and is not easy to parallelize and achieve

linear acceleration. The fundamental reason for the difficulty in parallelization is the

communication overhead between nodes. For example, in graph computing, the classic

PageRank algorithm [69] consists of several stages. In each stage, each node needs to

update its weight based on the weight of its adjacent nodes. In distributed computing,

each node processes a part of the node set, so each stage requires a large amount of

communication between nodes.

The MapReduce intermediate results are stored on disk, which results in high

I/O overhead. To address this, the Spark [68] big data processing framework suggests

maintaining the intermediate calculation state in memory. In-memory computing has

emerged as a new paradigm for big data processing [28,70] . Once the disk bottleneck

is eliminated, the latency and throughput of the data center network become the new

bottleneck of the distributed system. This has led to a performance leap in data center

networks from 1 Gbps to 40 to 100 Gbps over the past decade [71] (as shown in Figure

2.3), and the large-scale deployment of high-performance data center network transmis-

sion technologies represented by RDMA [41] .

In recent years, in-memory computing based on RDMAhas significantly improved

the performance of many distributed systems, including key-value storage [70] , dis-
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Figure 2.3 Rapid improvement of data center network performance.

tributed transactions [72-74] , remote procedure calls [20] , graph computing [75] , and more.

However, having high-performance network hardware does not necessarily lead to im-

proved communication performance in distributed systems. Section 2.2 of this article

discusses how the ”data center tax” of traditional operating systemsmakes it challenging

for distributed applications to fully utilize the high performance of data center network

hardware.

There are two paradigms for inter-process communication in distributed systems:

message passing and shared memory [76] . In the message passing paradigm, the process

serializes the data structure to be sent into a string and sends it to another process through

a network message. Message passing in distributed systems typically adopts the remote

procedure call (RPC) or message queue model, or a combination of the two. In the RPC

model, the server side registers a procedure to respond to the client’s RPC request. In

the message queue model, the producer broadcasts or distributes messages to several

consumers. To achieve decoupling of producers and consumers, buffering, and reliable

delivery of messages, the message queue model often introduces a broker service, such

as Kafka [77] . In terms of programming interfaces, distributed applications usually use

RPC libraries and message queue middleware, which rely on the socket interface of the

operating system to send and receive messages.

In the shared memory paradigm, multiple processes share memory space, and the

content written by one process can be read by all processes. Remote DirectMemory Ac-

cess (RDMA) technology aims to provide a shared memory abstraction for distributed

systems. It has been deployed in more and more data centers in recent years and is a

hot research topic in the system academic community. However, in many cases, the

abstraction level of shared memory is too low. Applications need to manage memory

allocation and release and object layout in memory on their own. Synchronization be-
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tween processes is also required when multiple processes write at the same time. On

the other hand, the abstraction level of traditional relational databases is too high, too

heavyweight, and performance is limited. The abstraction level of shared data structures

is between shared memory and relational databases, and it can efficiently and flexibly

store structured and semi-structured data. A typical example of shared data structure

storage is Redis [78] , whose basic abstraction is a key-value mapping table. Users can

specify a key to get or modify the corresponding value. The value can be a simple

string or a more complex data structure, such as a list, set, priority queue, dictionary,

etc. Redis also provides operation primitives for these data structures. Since key-value

mapping is a commonly used basic data structure, many data structure storages are also

called key-value storages. Shared data structure storage can reside in memory or be

persisted to disk or flash.

Memory shared data structure storage is increasingly the choice of distributed ap-

plications. For example, the Spark [68] big data processing framework uses Resilient

Distributed Datasets (RDD) as the basic abstraction, abstracting big data processing into

a data flow graph. Each node in the graph reads data from the RDD, performs trans-

formations, and outputs the results to the RDD. Because RDD storage can achieve high

availability and scalability, big data processing programs written with RDD abstraction

also have fault tolerance ① and scalability.

Message passing and shared data structure are two paradigms of inter-process com-

munication, each with its own advantages and disadvantages in different scenarios.

Both are crucial for the performance of distributed systems. These two communica-

tion paradigms can not only be theoretically converted to each other [79] , but also often

switch to the other paradigm in implementation. For instance, RDMA shared memory

and distributed data structure storage send read and write requests and data via net-

work messages; FaSST [20] implements high-performance RPC through RDMA shared

memory read and write primitives; Redis [78] key-value storage system can function as

a lightweight message queue service. Chapters 4 and 6 of this paper are dedicated to

enhancing the performance of message passing. Chapter 5 of this paper is dedicated to

enhancing the performance of memory shared data structure storage.

Since 2012, neural networks have been revived, deep learning has emerged as a

new paradigm in machine learning, and artificial intelligence has entered another peak

that continues to this day. It is widely recognized that data and computing power are
①In distributed systems, resilience refers to the ability of the system to automatically recover and continue running

using the remaining nodes when a node experiences unpredictable hardware failures or operating system crashes.
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the two main drivers of the revival of deep learning, with the computing power primar-

ily supplied by customized hardware GPUs different from CPUs. The advancement

of deep learning demands increasingly high computing power, which in turn stimulates

the development of GPUs and various deep learning processors. Because the computing

power of a single machine is insufficient to train large models on big data, distributed

machine learning training has become mainstream. Distributed machine learning train-

ing typically employs the Stochastic Gradient Descent (SGD) method. SGD consists of

several stages (epochs). At the start of each stage, all computing nodes share a model,

use different training data to calculate the gradient of the model, then aggregate the

model gradients of all computing nodes, modify the model, and use it as the shared

model of all computing nodes in the next stage. Distributed machine learning training

primarily has three architectures: Iterative MapReduce (IMR), parameter server, and

data flow [80] . Iterative MapReduce utilizes the infrastructure of big data processing

platforms and is suitable for data parallelism ① and synchronous communication.

The issue with synchronous communication is that the performance of the entire

system is hindered by the slowest node, and if one node fails, the entire system cannot

continue to operate. As a result, asynchronous Stochastic Gradient Descent and semi-

synchronous Stochastic Gradient Descent training methods have gained popularity in

recent years. In asynchronous communication methods, each node continues to train

on local data, but does not need to wait for other nodes to finish training before dis-

tributing local model gradient updates to all other nodes. To facilitate the distribution

of models and the aggregation of model gradients, distributed machine learning training

systems often equip a distributed parameter server [81] . Each worker node retrieves the

current parameters from the parameter server and uploads the local gradient updates to

the parameter server. A distributed parameter server not only balances the load of each

parameter storage node but also reduces communication overhead when worker nodes

only access part of the parameters.

The parameter server architecture can support not only data parallelism but also

model parallelism ②. For instance, DistBelief [82] utilizes both data parallelism and

model parallelism; AlexNet [83] leverages the independence of computations between

layers in convolutional neural networks and employs model parallelism. The parame-

ter server is a typical application of key-value storage. Taking Microsoft’s Multiverso
①Data parallelism in machine learning refers to different nodes using different data for training. Note the differ-

ence from data parallelism within FPGA mentioned later.
②Model parallelism in machine learning refers to multiple nodes calculating part of the model, i.e., the gradient

of a training data needs to go through multiple nodes to be calculated.
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parameter server [84] as an example, parameters can be vectors, matrices, tensors, hash

tables, or sparse matrices. At present, most distributed machine learning systems of

large internet companies use the parameter server architecture.

Owing to the growing popularity of data and model hybrid parallel distributed ma-

chine learning training methods, distributed deep learning systems based on data flow,

such as Tensorflow [85] , have emerged in recent years. In data flow systems, each node

in the data flow graph represents a data processing operator, which is a finite state au-

tomaton. Nodes are connected by control message flows and data flows, adopting the

distributed system communication paradigm of message passing. In fact, nodes in the

data flow graph can also be parameter servers, which transforms into the distributed

communication paradigm of shared data structures.

2.1.3 Customized Hardware

In the era of mainframes, mainframes and even supercomputers that needed to pro-

cess a large amount of information generally adopted integrated hardware and software

systems, that is, the hardware and software were developed by the same company team.

Due to the use of high-speed hardware interconnection and hardware redundancy, these

systems often have both high performance and high reliability, but the cost increases

sharply with the expansion of the system scale.

As mentioned in Section 2.1.2, since the end of the 20th century, Internet data

centers are usually composed of standard commercial servers. The reason why these

ordinary commercial servers are low in cost is because their architecture is similar to

a large number of commercial personal computers (PCs), and the components such as

CPU, memory, motherboard, hard disk, and network card are all standard components,

independently designed and implemented by various professional companies. The op-

erating system, database, web server and other software are also standardized, either

developed by professional companies or open source software. Standard components

with large production volumes can better amortize one-time engineering costs such as

research and development and wafer production, thereby reducing the price of standard

components. Although the system composed of standard components reduces the hard-

ware and software costs of the data center, it also imposes restrictions on the developers

of standard components: everyone needs to comply with the interfaces and protocols

between standard components and can only innovate within their own boundaries. The

builders of the data center system can only combine standard components like building

blocks, and it is difficult to consider and optimize globally.
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Since 2010, the trend of cloud computing scale, the demand of data center appli-

cations, and the performance limitations of general-purpose processors have made cus-

tomized computing a trend in data centers, and engineers have regained the opportunity

for hardware and software co-design. First, in the cloud computing platform, the soft-

ware and hardware environment are controlled by the service provider. After reaching

a certain scale, all forms of customization become possible. As long as it can improve

performance, reduce prices, and enhance competitiveness, cloud service providers have

enough motivation to customize chips, change network protocols, change server archi-

tectures, modify operating systems, and even rewrite applications. Secondly, as men-

tioned in Section 2.1.2, applications such as big data and machine learning have a high

demand for computing power. Finally, the performance limitation of general-purpose

processors is the main driving force for customized hardware, which will be discussed

in detail below.

Moore’s Law predicts that the performance of unit area integrated circuits can be

improved by making the storage and processing units smaller and smaller, thereby in-

creasing the number of storage and processing units of unit area integrated circuits.

More profound is Dennard’s scaling law [86] , that is, the performance of integrated cir-

cuits can double every two years without consuming more energy and area. Its theoret-

ical basis is that a new generation of semiconductor technology is adopted every two

years, the transistor size is reduced by 30%, and the chip area is reduced by 50%. In

order to maintain a constant electric field, the voltage is reduced by 30% in proportion

to the transistor size. At the same time, because the chip size is reduced, the delay is

reduced by 30%, and the clock frequency can be increased by 40% [2,87] . In that era,

the dynamic power consumption of integrated circuits accounted for the main part of

power consumption, which was directly proportional to capacitance, the square of volt-

age, and frequency, so it can be calculated that power consumption is reduced by 50%.

According to this ideal model, the area and power consumption of integrated circuits

are halved every two years, so twice the number of transistors can be stuffed under the

original area and power consumption, and the clock frequency is also increased to 1.4

times. For the single-threaded microprocessor of the von Neumann architecture, these

additional transistors are mainly used for larger caches, more complex pipelines, su-

perscalar, out-of-order execution, register renaming, branch prediction, etc., to increase

the number of instructions that can be executed per clock cycle. According to Pollard’s

empirical law [88] , the computing power per clock cycle is roughly proportional to the

square root of the number of transistors. The computing power per unit time is equal
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to the clock frequency multiplied by the computing power per clock cycle, so the per-

formance of the microprocessor is doubled every two years without consuming more

energy and area.

Regrettably, since the advent of the 21st century, the dividends ofMoore’s Law and

Dennard’s scaling law have been gradually diminishing. Firstly, as the feature size of

integrated circuits reduces, the voltage also decreases. However, the lower the threshold

voltage that controls the transistor, the faster the leakage current of the transistor will

increase, becoming a significant part of the power consumption of integrated circuits.

To control the leakage current, the threshold voltage cannot be reduced, and may even

need to be higher than the previous generation of integrated circuits [87] . Therefore,

for each new generation of semiconductor technology, the power consumption of each

transistor will not be halved as anticipated.

Secondly, because the area of each transistor is halved and the power consumption

is not reduced proportionately, the power consumption of unit area integrated circuits

will increase. The heat dissipation problem of the chip has become a major factor lim-

iting the scale of integrated circuits [2] .

Furthermore, for the same integrated circuit, within the permissible range, in order

to double the performance and double the clock frequency, the voltage must be doubled

accordingly to reduce the flip delay of the transistor. Thus, the power consumption is

roughly proportional to the cube of the clock frequency. Due to the limitation of heat

dissipation, the clock frequency of integrated circuits is also limited, and it is unrealistic

to significantly improve the performance of integrated circuits by ”overclocking”.

Lastly, the 7 nm semiconductor process has been mass-produced, and the radius

of a silicon atom is 0.1 nm. As the feature size of integrated circuits is getting closer

and closer to the atomic size, quantum effects cannot be ignored, which brings signifi-

cant technical challenges to lithography technology [2] . In fact, since around 2010, the

shrinkage of the feature size of integrated circuits has significantly slowed down and

can no longer maintain the speed of one generation every two years.

In conclusion, under the current semiconductor technology framework, the per-

formance of unit area integrated circuits can no longer maintain the speed of doubling

every two years, and the improvement of performance also means the increase of power

consumption, and the ”free lunch” is over.

However, from the standpoint of chip architecture, the traditional von Neumann ar-

chitecture is unable to fully exploit the computational capacity of each transistor. Con-

sequently, there remains an opportunity to ”extract as much as possible from this lemon
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that is Moore’s Law” [89] . Theoretically, the computational power per clock cycle could

be proportional to the number of transistors, but the aforementioned Pollack’s empir-

ical law [88] suggests that the computational power per clock cycle of von Neumann

microprocessors is empirically proportional to the square root of the number of transis-

tors. For instance, the world’s first microprocessor, Intel 4004, manufactured in 1971,

utilized a 10-micron process, contained 2300 transistors, had a clock frequency of 108

KHz, and could execute 90 K 4-bit operations per second. The Intel Xeon E5 micropro-

cessor, based on the Broadwell architecture in 2016, utilized a 14-nanometer process (1

M times that of 4004), contained 7.2 billion transistors (3 M times that of 4004), had a

base frequency of 2.2 GHz (20 K times that of 4004), and could execute approximately

300 G 64-bit operations per second① (3 M times that of 4004) [90] . As can be observed,

the number of operations that Xeon E5 can execute per clock cycle is approximately

150 times that of 4004, while the number of transistors is 3 million times. Even when

considering the complexity of 64-bit computing compared to 4-bit computing, it still im-

plies that the contribution of each transistor in 4004 to computational power is hundreds

of times higher than that of Xeon E5. This is because the instruction set and microar-

chitecture of von Neumann microprocessors are becoming increasingly complex, firstly

to enhance single-thread performance, secondly to add deeper cache levels to address

the ”memory wall” issue, and thirdly to support communication and synchronization

between cores, operating systems, and virtualization technologies. The proportion of

transistors actually used for computation is diminishing progressively.

Due to the performance bottleneck of von Neumann architecture processors, cus-

tomized hardware has emerged as a trend. The basic operations of customized hard-

ware do not need to be expressed through instructions, and the data operation process

is relatively fixed, eliminating the need for overhead related to von Neumann architec-

ture, instruction decoding execution, and pipeline control. Customized hardware can

customize data paths and memory levels, circumventing the ”memory wall” problem

of von Neumann architecture where all memory addresses share access. Customized

hardware can construct numerous processing units to parallel process the same type

of data (such as matrix operations), or a deep pipeline to process deep logic level cal-

culations (such as symmetric encryption). As depicted in Figure 2.4, the energy effi-

ciency of Nvidia GPUs such as K80, P100, P40, V100, Intel FPGAs such as Arria 10,

Stratix 10, and Google’s deep learning processor TPU is significantly higher than that

of general-purpose processors (note that the y-axis is a logarithmic coordinate system),
①Assuming the application uses AVX2 instructions, does not use FMA3 instructions, and does not overclock.
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and essentially follows Moore’s Law’s prediction in terms of performance, that is, the

energy efficiency of customized hardware doubles every 18 months.

Figure 2.4 The frequency of general-purpose processors and Dennard scaling gradually end,
but customized hardware redefines and continues Moore’s Law.

2.1.4 Fine-grained Computing

Since the introduction of the Docker framework in 2013, numerous Internet com-

panies have utilized containers to deploy services [91] . Containers are not merely

lightweight virtual machines, but more importantly, they redefine the architecture of

Internet services, decomposing a few complex macroservices into a large number of

simple microservices. Each microservice is deployed in the form of a container, en-

abling efficient scalable data center scheduling, software dependency management, and

isolation between microservices, enhancing the efficiency of development, testing, and

operation. The computing granularity of the microservice architecture is finer than the

traditional architecture, hence the demand for total request service capability is higher,

and the demand for communication between microservices is also high. For instance,

WeChat operates more than 3000 microservices on over 20,000 servers. The entrance

layer microservices respond to 10 billion to 100 billion user requests per day, and each

user request triggers moremicroservice requests within the system, so the entireWeChat

backend needs to respond to hundreds of millions of microservice requests per sec-

ond [92] .

Containers represent a more refined computing paradigm than virtual machines.

A single server host can deploy hundreds of containers, while typically only dozens of

virtual machines can be deployed.
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Firstly, the need to support a larger number of containers presents challenges for

data center virtualization. In terms of computing virtualization, traditional virtual ma-

chines generally allocate CPU cores directly to the virtual machine. However, the num-

ber of containers usually exceeds the number of CPU cores, necessitating the operating

system to schedule and allow various containers to time-share CPU cores. This in-

creases scheduling overhead and also complicates performance isolation and quality of

service assurance. In terms of network and storage virtualization, the number of con-

tainers is an order of magnitude larger than that of virtual machines, exerting pressure

on lookup table capacity, queue numbers, cache capacity, and so on.

Secondly, the division ofmacro services intomicroservices has led to an increase in

communication between containers. Many communications that were originally within

the same virtual machine have become communications between containers, putting

pressure on the container network within the server. To prevent a significant decline in

the performance of microservices, it is necessary to ensure that the performance of the

server container network is close to the performance of shared memory communication.

Thirdly, to enhance the fault tolerance and scalability of microservices, stateless

microservice design has gradually become a trend. This means that the container itself

does not store state, input data, output data, container configuration, and internal state

are all stored in the data structure storage service outside the container. This necessitates

the data structure storage to have low latency, high throughput, and high availability.

Container-based microservices are not the endpoint of reducing computing gran-

ularity. Traditional operating system processes still run inside the container, and these

processes consume a certain amount of memory resources even without external re-

quests. To ensure that the container can respond to user requests that may come at any

time, computing resources such as CPU also need to be reserved. Containers also need

to occupy a certain amount of storage space. Therefore, cloud service providers need

to reserve computing, memory, and storage resources for each container, and charge

for these reserved resources. The scaling, scheduling, and operation and maintenance

of containers also need to be borne by the users of the containers. Although there are

open-source frameworks such as Kubernetes, it also increases the burden on container

users. In 2015, Amazon AWS launched a serverless computing service called Lambda,

which allows users to only write event-driven business code within the programming

framework of the cloud service provider, and leave tasks such as execution environ-

ment, scaling, scheduling, etc. to the cloud service provider. At present, mainstream

cloud service providers such as Amazon, Microsoft, Google, Alibaba, and Tencent all
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provide serverless computing services.

In 2019, the University of California, Berkeley’s forecast report on serverless

computing indicated that despite the numerous advantages of the serverless comput-

ing paradigm and its promotion by major cloud service providers, the performance

and cost of many applications utilizing serverless computing are not ideal due to issues

with cloud storage performance and the absence of temporary storage services. Indeed,

serverless computing is not a novel concept. Current big data processing frameworks

(such as Spark) and data lake services from cloud computing manufacturers are gener-

ally stateless for fault tolerance and scalability, and are widely adopting the serverless

computing paradigm. Traditional machine learning frameworks often separate train-

ing and inference, while in reinforcement learning, the agent needs to constantly in-

teract with the surrounding environment, and training and inference are constantly cy-

cling, thus necessitating fine-grained computing. The distributed reinforcement learn-

ing framework Ray also employs a stateless data processing function programming

model and saves the intermediate state of the data stream processing process through

key-value storage.

In summary, fine-grained computing presents challenges to the performance of

data center virtualization, container networks, data structure storage services, and oper-

ating system scheduling.

1. Programmable Switches

The trend towards programmable switches is driven by both demand and hard-

ware. From the demand perspective, the automation of network operations (self-driving

network) is becoming increasingly important. To achieve automated network fault de-

tection, diagnosis, and recovery, intelligence must be incorporated into the network,

rather than treating the network as a black box. For this reason, programmable packet

capture and statistical functions need to be added to the switch. Moreover, by utilizing

the high-speed packet processing capabilities of the switch, caching, aggregation, syn-

chronization, transaction processing, etc., in distributed systems can be accelerated, and

low-latency, lossless networks also require the support of programmable switch hard-

ware. Many people believe that adding programmability to switches will increase chip

area and power consumption, but this is not necessarily the case. Barefoot Company

pointed out that about 30% of the area of the switch chip is used for serial IO commu-

nication, 50% of the area is used for memory for lookup tables and packet buffering,

and only 20% of the area is used for packet processing logic. As the bandwidth of the

switch continues to grow, the chip area is also increasing, and at this time, the 20% area
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used for packet processing has spare capacity, which can accommodate more logic [93] .

Programmable switches can be categorized into three levels based on their pro-

grammability, from low to high. The first level includes switches that adhere to the

OpenFlow standard. The packet processing logic is a pipeline composed of several

match-action tables, but each table has certain restrictions on matching and execution.

The second level includes switches that adhere to the P4 standard. Based on the pipeline

structure, the matching rules, operations to be performed, and packet header parsing

rules for each table entry can be customized. The third level is network processors,

which usemulti-core CPUs specifically designed for network processing to process each

packet. This level can achieve maximum flexibility, but the throughput of a single net-

work connection is limited by the CPU frequency. In reality, fixed-function pipelines,

general-purpose programmable pipelines, and network processors are not clearly distin-

guished. In data center switches, a trend towards gradual integration can be observed,

such as using crossbar switches or on-chip networks to flexibly interconnect various

packet processing modules and on-chip memory.

To simplify switch operation and maintenance, Microsoft initiated the SONiC

white box switch open source project [94] . Firstly, a set of switch chip APIs were de-

fined, allowing the hardware and software of the switch to evolve independently without

worrying about compatibility issues. Secondly, a container-based modular switch soft-

ware architecture was designed. By storing persistent states independently of the con-

tainer, fine-grained fault recovery and zero service interruption time online upgrades

were achieved. Finally, monitoring and diagnostic capabilities were provided to sup-

port automatic network operation and maintenance.

2. RDMA Network Cards

Traditional Ethernet network cards have relatively simple functions. The network

protocol stack is implemented in the operating system kernel, and software middleware

provides higher-level abstractions such as RPC, message queues, etc., to the applica-

tion program. In cloud computing scenarios, virtual switch software is also needed to

implement network virtualization and firewall and other network functions. Therefore,

the end-to-end round-trip latency of the data center network is as high as hundreds of

microseconds on average, and in extreme cases, it can even reach the millisecond level,

which cannot meet the needs of low-latency distributed computing. Among them, the

latency of the software accounts for the main part. The Infiniband [35] network com-

monly used in high-performance computing implements most of the network protocol

stack in the network card, which can achieve end-to-end microsecond-level latency,
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so the Remote Direct Memory Access (RDMA) technology in it has begun to become

popular in data centers. To be compatible with existing data center networks, RDMA

network cards in data centers usually use Ethernet and UDP/IP, and then encapsulate the

RDMA reliable transmission protocol on top of it. However, the deployment of RDMA

in cloud computing data centers is much more complicated than in high-performance

computing: firstly, the scale of data centers is larger than that of high-performance com-

puting clusters; virtual machines sharing the same physical host need isolation and QoS;

virtual machines need hot migration and fault recovery capabilities; in addition, there

are many types of applications in data centers, and communication patterns are com-

plex, RDMA primitives have a low level of abstraction, and socket compatibility and

higher-level abstractions such as RPC are needed.

3. Low-latency Network Transmission Protocol

The ideal network and interconnect should be capable of scaling to millions of de-

vices and components within the data center, possess low latency, high bandwidth, and

lossless characteristics, and be able to withstand the failure or even malicious attacks of

some components. For this reason, network and interconnect designers can draw from

a variety of historical designs, such as supercomputers, on-chip networks, interconnects

between line cards in core routers, circuit-switched networks, time-divisionmultiplexed

networks, etc. On the other hand, they can utilize new physical layer technologies, such

as optical switching chips, laser communication, and 60G wireless networks, etc.

The network latency from the sending network card to the receiving network card

in the data center primarily includes the propagation delay on the optical fiber, the pro-

cessing delay of the switch, and the queuing delay in the switch, with the queuing delay

accounting for the majority. To reduce the queuing delay, data center switches generally

use ECN, RED, and other mechanisms to feedback congestion information to the send-

ing end, but this feedback delay is often long, and it cannot eliminate the occasional

queuing caused by packets from different sending ends colliding. For this reason, a

series of recent studies are rethinking the existing congestion control algorithms, and

switches also need more flexible dynamic control to minimize queue length and ensure

quality of service as much as possible. For example, Microsoft Azure Cloud [41] , Al-

ibaba Cloud [95] , and Huawei Cloud [96] have built large-scale data center RDMA net-

works, constructing low-latency, high-throughput, and lossless data center networks,

providing high-performance network interconnects for big data processing and large-

scale machine learning.
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2.1.5 In-memory Data Structure Storage

In distributed systems, in-memory data structure storage is of great importance.

Traditionally, in-memory data structure storage has primarily been utilized for

caching purposes, such as frequently accessed web page content and real-time updated

leaderboards. Memcached [26] and Redis [78] are widely used in-memory data structure

storage software, most of which provide key-value mapping data structures and extend

more complex data structures such as queues, arrays, and priority queues based on this.

As large-scale distributed computing becomes increasingly significant, in-memory

data structure storage, as one of the two paradigms of inter-process communication

(message passing and shared memory), has become an essential basic component of

distributed computing. For instance, the big data processing framework Spark uses in-

memory key-value storage as a method to store and pass intermediate results of data

processing. On one hand, it is used to utilize the calculation results of the predecessor

nodes in the calculation flow graph as the input of the successor nodes; on the other hand,

it is used to recover from the output of the predecessor nodes when the calculation node

fails, and re-execute the calculation of the successor nodes. In graph computing [97-98] ,

distributed computing nodes share the same graph, and the points, edges, and other

information in the graph can be expressed using key-value mapping.

As a final example, in distributed databases, for the concurrency control of trans-

actions, distributed database systems often assign each transaction an increasing and

non-repeating sequence number [99] . This sequence number generator is also an appli-

cation scenario of key-value storage.

In the future, in-memory data structure storage will also become a basic service for

enabling serverless computing. In serverless computing, functions should be stateless,

and stateful applications need to store states in external storage. The calculation flow

graph composed of multiple functions also needs external storage to pass intermediate

results. If persistent storage is used, especially existing cloud storage, its performance

and cost are unacceptable [100] .

In-memory data structure storage, as a fundamental service within the data cen-

ter, is becoming increasingly crucial in the context of expanding distributed computing

scales and progressively reducing programming granularity.
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2.2 “Data Center Tax”

The rise of distributed computing in data centers has not only led to the develop-

ment of high-performance data center networks but also imposed high demands on the

performance of in-memory data structure storage. The communication requirements

between customized hardware have also led to the development of high-performance

data center interconnects, thereby promoting the integration of networks and intercon-

nects. However, implementing resource virtualization in high-performance data center

networks incurs significant overhead.

In addition to resource virtualization, the performance of the network protocol

stack in traditional operating systems is also unsatisfactory, largely wasting the low

latency and high throughput of data center networks [6] . The trend towards fine-grained

computing exacerbates the performance pressure on virtualization and operating sys-

tems, and also necessitates high-performance in-memory data structure storage. This

article refers to the costs of the data center, excluding the execution of user applications,

as the ”data center tax” [4] . This includes the operating system and virtual machine mon-

itor on the computing node, network node, and storage node, as shown in the shaded

background box in Figure 2.5. The following sections will discuss the ”data center tax”

imposed by virtual networks, network functions, operating systems, and data structure

processing.

Figure 2.5 Virtualized data center architecture. The boxes with shaded backgrounds rep-
resent the costs of the data center, excluding the execution of customer applications, i.e., the
”data center tax”.

2.2.1 Virtual Networks

In public clouds, major customers require more than just virtual machines; they

also need the simulation of enterprise network architectures. To support network secu-

rity features such as security groups and access control lists, as well as to conceal inter-

nal network structures on the internet and reduce attack surfaces, public cloud services
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provide Virtual Private Cloud (VPC) services. This involves partitioning a logically iso-

lated section in the public cloud, offering rich network semantics, such as private virtual

networks with customer-provided address spaces, security groups and access control

lists (ACLs), virtual routing tables, bandwidth metering, Quality of Service (QoS), etc.

Consequently, the network in the public cloud is virtualized, decoupling the virtual net-

work from the physical network. As shown in Figure 2.6, when two customer virtual

machines on two computing nodes communicate, they need to go through the encap-

sulation and decapsulation of the virtual network software, and may also need to go

through the processing of several network functions on the network node. Network

functions will be the main topic of the next section.

Figure 2.6 Data center virtual network architecture.

The data plane of the virtual network can be described by a Match-Action Table,

which can theoretically be implemented on commercial network switches. In 2007,

Stanford University proposedOpenFlow [101] , which unified the control plane interfaces

of different vendor switches, allowing the network to be programmed by software, i.e.,

Software Defined Networking (SDN). To support the control plane of SDN, Onix [102]

proposed a control framework for large-scale switches, and programming languages like

Frenetic [103-104] proposed using the Functional Reactive Programming (FRP) paradigm

to simplify control plane event handling. Covisor [105] implemented the virtualization of

the control plane. As the programmability of switches increases, it becomes possible to

define the data plane forwarding behavior of switches from top to bottom using software,

rather than adapting to the fixed functions of switches from bottom to top likeOpenFlow.

For this purpose, in 2013, Stanford University proposed P4 [106] , providing pro-

grammable packet parsing, stateful match-action pipelines, and other programming ab-
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stractions. The academic community has proposed various implementations of the P4

language on programmable switch chips [107] , programmable network cards [108] , FP-

GAs [109] , and CPU virtual switches [110] . Industrial solutions like the Barefoot Tofino

switch chip [111] , Mellanox Connect-X network card [112] , and the Xilinx SDNet network

processor based on FPGA [113] also support the P4 language.

However, virtual networks based on network switches face two fundamental chal-

lenges in cloud data centers. First, the semantics of actual cloud data center virtual

networks are very complex and change too frequently, making it difficult for the up-

date speed of traditional switch hardware with fixed functions to match the speed of

demand changes. Second, a top-of-rack switch connects dozens of rack servers, each

of which can virtualize dozens of virtual machines, so the switch needs to support the

data plane encapsulation and forwarding rules of up to thousands of virtual machines.

The lookup table capacity of existing commercial switch chips is insufficient. For this

reason, Microsoft proposed a programming abstraction similar to P4, VFP [114] , to sup-

port host-based software-defined networking, implementing virtual networks in virtual

switch software. Host-based virtual networks can scale well with the number of com-

puting node servers and maintain the simplicity of the physical network.

In this network virtualization model based on virtual switches, every packet sent

and received by a virtual machine is processed by the virtual switch (vSwitch) in the

virtual machine monitor. Receiving packets usually involves the virtual switch software

copying each packet to a buffer visible to the virtual machine, simulating a soft interrupt

for the virtual machine, and then letting the network protocol stack of the virtual ma-

chine’s operating system continue network processing. Sending packets is similar, but

in reverse order. Compared to non-virtualized environments, this additional host pro-

cessing reduces performance, requires additional changes to privilege levels, reduces

throughput, increases average latency and latency variation, and increases host CPU

utilization.

As shown in Figure 2.3, the improvement speed of data center network perfor-

mance far exceeds that of general-purpose processors. In a 10 Gbps network, only one

CPU core is needed, while in the current 40 Gbps network, about 5 CPU cores are

needed, and in the future 100 Gbps network, even 12 CPU cores may be needed. This

brings about the ”data center tax”.
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2.2.2 Network Functions

In addition to virtual networks, data centers also require a variety of network func-

tions. For example, large-scale Internet services have multiple front-end servers pro-

cessing user requests concurrently, which requires a highly available, high-performance

load balancer to accept user requests and distribute them to the front-end servers.

Enterprise-grade load balancers may also support a series of advanced features, such

as flexible load balancing rules based on user requests, HTTPS secure connections, log

recording and statistics, detection and filtering of possible denial of service (DoS) at-

tacks, Web application injection attacks, etc. [7] .

Furthermore, many governments and enterprises already have their own IT infor-

mation systems. If all are migrated to the public cloud, it does not meet some insti-

tutions’ requirements for data privacy and security, and the cost and risk of one-time

migration are too high. Therefore, it is necessary to connect the customer’s existing

IT information systems (on-premises) and virtual networks on the public cloud. In ad-

dition, in response to customer concerns about data security and privacy, many cloud

vendors offer a private cloud (or dedicated cloud) mode, which deploys the software

and hardware architecture of the public cloud on the customer’s dedicated data cen-

ter infrastructure. To support the connection between on-premises, private clouds, and

public clouds, cloud vendors need to provide virtual private line services, which require

a dedicated line gateway capable of implementing basic network functions such as en-

cryption, routing, access control lists, as well as advanced network functions such as

caching, TCP acceleration. In some cases, the connections between these clouds and

between the cloud and the office are not through SDH or MPLS dedicated lines, but

through the Internet public network. At this time, protocols such as IPSec are needed

to encrypt and sign the data, using an IPSec gateway [115] .

In addition, operator networks’ data centers also run a large number of network

functions. For instance, AT&T operates over 5,000 Central Offices in the United States,

each supporting tens of thousands of users, running Broadband Network Gateways

(BNG) and Evolved Packet Core (EPC) gateways in the LTE network [116] . Operators

not only aim to reduce the assets and operating costs of the central office but also aspire

to lease the edge computing resources of the central office to third parties [116] .

Traditionally, these network functions are implemented using dedicated devices,

such as F5’s load balancer [117] , Distributed Denial of Service (DDoS) protection, Web

Application Firewall (WAF), etc.; core router or F5 BIG-IP gateway provided by Cisco
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offers IPSec gateway functions; operators utilize core network equipment from compa-

nies like Huawei, Ericsson, etc. However, these dedicated hardware devices are costly

and lack flexibility. Public clouds and 5G networks require flexible network functions

to support secure and performance isolation between customers, to meet the Quality

of Service (QoS) of different customers. Data center networks and 5G core networks

need to support a variety of different service requirements on the same physical net-

work. Such as the three typical application scenarios of 5G: extremely high bandwidth

(eMBB), massive scale (MTC), extremely low and stable latency (URLLC). High band-

width, large scale, low latency requirements are somewhat contradictory to some extent

and need to be balanced according to the application’s requirements. For high flexi-

bility, data centers such as Amazon, Microsoft, Google, etc., have adopted virtualized

software network functions to replace dedicated devices. The 3GPP standard also spec-

ifies that the 5G core network adopts a service-based system architecture, and these

services need to be implemented using virtualized network functions [118-119] .

Through the examples of load balancers, dedicated / IPsec gateways, and operator

networks, it can be seen that the complexity of network functions is significantly higher

than that of virtual networks. Virtual networks operate at the network layer, data link

layer, generally only need to process packet header information, and do not need to

maintain complex variable states; while network functions cover the application layer,

transport layer, network layer, etc., need to process the payload of data packets, and

need to find the network connection to which the data packet belongs based on the data

packet, make processing based on the current state of the connection, and then update

the state of the connection. The programming flexibility of P4 [107] is not enough to

implement flexible payload processing and stateful processing based on connections.

In 2000, Professor Eddie Kohler of the Massachusetts Institute of Technology pro-

posed Click [120] , a modular router programming framework. Click decomposes net-

work processing into several basic elements (element), each element is implemented

with a C++ class; the router’s packet processing is a data flow graph composed of these

elements, and the Click programming language allows flexible interconnection between

these elements. Since the Click open-source project already has a large number of ele-

ments, many network researchers only need to interconnect these elements to assemble

a complex network function; since Click uses C++ language programming, its flexibil-

ity is very high. Therefore, a series of recent research works [121-122] implement net-

work functions based on the Click programming framework. E2 [123] proposed a highly

available, highly scalable network function scheduling and management framework.
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Chapter 4 of this paper will propose a high-performance network function processing

platform that implements the Click programming framework on FPGA.

2.2.3 Operating System

The operating system mainly includes three aspects of functionality: resource vir-

tualization, inter-process communication, and high-level abstraction. Resource virtu-

alization refers to the sharing of computing, network, and storage resources among

multiple processes in the operating system, which requires ensuring security isolation

and performance isolation between processes. Inter-process communication includes

message passing, shared memory, and synchronization primitives such as locks and

semaphores. High-level abstraction is the abstraction of hardware resources into a uni-

fied interface that is easy to use for applications, such as the ”everything is a file” model

in Linux. The network is abstracted into sequential read-write socket connections, and

storage is abstracted into file systems. This paper focuses on the network functions

of the operating system, namely the sharing of network resources among multiple pro-

cesses, inter-process communication based on message passing, and socket abstraction.

Distributed applications commonly use the socket primitives in the operating sys-

tem for communication. As shown in Figure 2.7, for communication-intensive applica-

tions such as HTTP load balancers, DNS servers, Memcached [26] , and Redis [78] key-

value storage servers, the operating system occupies 50% to 90% of CPU time, most of

which is used to handle socket operations.

Figure 2.7 Communication-intensive applications consume a lot of CPU time in the operating
system kernel.

In the Linux operating system, applications perform I/O operations through File

Descriptors (FD). Conceptually, the Linux network protocol stack consists of four lay-

ers. First, the Virtual File System (VFS) layer provides a socket API based on file

descriptors for applications. Second, at the transport layer, the traditional TCP trans-

port protocol provides I/O multiplexing, congestion control, packet loss recovery, and

other functions. Third, at the network and link layer, the IP protocol provides routing

functions, Ethernet provides flow control and physical channel multiplexing at the data
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link layer, and Linux also implements Quality of Service (QoS) and firewalls based on

the netfilter framework. Fourth, at the device driver layer, the network card driver com-

municates with the network card hardware (or the virtual loopback interface for sockets

within the host) to send and receive packets.

It is well known that the virtual file system layer contributes a large part of the

overhead of network I/O operations [124-125] . In Chapter 6 of this paper, a simple ex-

periment will verify that the latency and throughput of Linux TCP sockets between two

processes in the host are only slightly worse than Linux pipes, FIFOs, and Unix domain

sockets. Pipes, FIFOs, and Unix domain sockets bypass the transport layer and network

card layer, but their performance is still not satisfactory.

Using the Linux network protocol stack as an example, its overhead ismultifaceted.

For each I/O operation, a kernel crossing is necessary, and a file descriptor lock must

be obtained to safeguard multi-threaded concurrent operations. Each packet’s sending

and receiving involve a series of operating system overheads such as transport protocol,

buffer management, I/O multiplexing, interrupt handling, and process awakening. Each

byte’s sending and receiving require multiple memory copies. Each establishment of a

TCP network connection necessitates the allocation of kernel file descriptors and TCP

control blocks, and the TCP server side also needs to schedule new connections. These

overheads will be discussed in detail in Chapter 6.

Chapter 6 of this paper will propose a user-space network protocol stack, which

transfers the overhead of the operating system’s network protocol stack to the user-

space library and programmable network card, achieving network transmission close to

hardware performance.

2.2.4 Data Structure Processing

Traditional software-based memory data structure storage systems need to access

the network through the operating system kernel at both the client (computing node)

and server side (storage node), and also need to handle concurrent access to shared data

structures through software, bringing a series of overheads.

The overhead of the operating system kernel has been discussed in the previous

section. Even if these overheads are completely eliminated, the throughput bottleneck

of memory data structure processing is still limited by the computation in data structure

operations and the latency in random memory access. On the one hand, CPU-based

key-value storage needs to spend hundreds of CPU cycles to perform key comparisons

and hash slot calculations. On the other hand, the hash table of key-value storage is
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several orders of magnitude larger than the CPU cache, so the waiting time for mem-

ory access is determined by the cache miss waiting time of the actual access pattern.

Chapter 5 will analyze in detail that even if all CPU cores process key-value operations,

their throughput is still far lower than the random access capability provided by the

host DRAM memory. For this reason, Chapter 5 will propose a memory data structure

storage based on programmable network cards.

2.3 Architecture of Programmable Network Cards

Programmable network cards are required to offer superior cost efficiency com-

pared to host CPUs, while also maintaining the flexibility to adapt to changes in work-

loads and data center functions. For instance, theymay need to extend from network vir-

tualization to storage virtualization, or even to the network functions and data structure

processing proposed in this paper. As such, programmable network cards are typically

not a single chipwith fixed functions, but a system on a chip (SoC). Some programmable

network cards also possess control plane processing capabilities similar to those of host

CPUs. Therefore, based on the architecture of the data plane, the architecture of pro-

grammable network cards can be broadly divided into four categories: dedicated chips,

network processors, general-purpose processors, and reconfigurable hardware.

2.3.1 Application Specific Integrated Circuit (ASIC)

An Application Specific Integrated Circuit (ASIC) is an integrated circuit chip

specifically developed for certain applications. The threshold for ASIC development

is relatively high, and the development cycle is also relatively long. At the current

level of technology, the one-time research and development (NRE, Non-Recurring En-

gineering) cost of a medium-complexity ASIC will be between several million and ten

to twenty million dollars, and it requires a development cycle of one to two years. In the

past, developing ASICs was often something that professional hardware chip compa-

nies could do. However, with the continuous expansion of the scale of cloud computing

platforms, cloud computing system companies have also begun to try to design dedi-

cated chips for their own clouds.

Most data center network cards designed by network card manufacturers have a

certain degree of programmability. For example, the Mellanox ConnectX-5 [126] hard-

ware network card not only has the standard network card’s packet sending and receiv-

ing functions, Receive Side Scaling (RSS) and Virtual Machine Queues (VMQ), TCP
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checksum and Large Send Offload (LSO), RDMA function, QoS network queue and

routing table offload functions, but also includes a network switch with a configurable

Match-Action Table, which can implement Open vSwitch (OVS) offload function. Al-

though the Match-Action Table can be programmed, it is not Turing complete and lacks

the flexibility to parse new packet encapsulation formats, cannot parse application layer

protocols, and cannot implement new encryption algorithms. In other words, the data

plane programmability of dedicated chips is implemented by configuring the Match-

Action Table, not by a general programming language.

Traditionally, Microsoft has partnered with dedicated network chip suppliers (such

as Intel, Mellanox, Broadcom, etc.) to offload host networking in Windows. For in-

stance, TCP checksum and Large Send Offload (LSO) in the 1990s, Receive Side Scal-

ing (RSS) and Virtual Machine Queues (VMQ) for multi-core scalability in the 2000s,

and stateless offload in 2010 for NVGRE and VxLAN encapsulation in Azure’s virtual

network solution. In fact, the Generic Flow Table (GFT) [114] proposed by Microsoft

was initially intended to be implemented by ASIC suppliers. Microsoft widely shared

early design concepts in the industry to see if suppliers could meet the requirements.

However, over time, Microsoft’s enthusiasm for this approach has diminished, as no

design has emerged that meets all the design goals and constraints set by the cloud

computing platform [10] .

In recent years, the academic community has also proposed a variety of

programmable network card architectures, such as FlexNIC [108,127] , Emu [128] ,

SENIC [129] , sNICh [130] , Uno [131] , PANIC [132] , etc., all based on dedicated chips,

primarily aimed at optimizing the Match-Action Table of network switches, imple-

menting richer network virtualization functions, high-performance communication be-

tween virtual machines within the host, more flexible Direct Memory Access (DMA),

etc. [108,127] .

One significant challenge faced by programmable network card suppliers when

implementing a dedicated chip architecture is that SR-IOV is an example of all-or-

nothing offload. If any required SDN function cannot be successfully handled in the

programmable network card, the SDN protocol stack must revert to a software-based

SDN implementation, almost losing all the performance advantages of SR-IOV offload.

Custom chip designs for SDN processing offer the highest performance potential.

However, over time, they lack programmability and adaptability. In particular, the time

span between the proposal of requirement specifications and the arrival of the chip is

long, usually 1 to 2 years. During this range, requirements continue to change, mak-
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ing the new chip already behind software requirements. The design of custom chips

must continue to provide all functions for the server’s 5-year lifecycle (at the scale of

Microsoft Azure cloud, retrofitting most servers is not feasible). All-or-nothing offload

means that the custom chip design specifications set today must meet all SDN require-

ments for the next 7 years.

Programmable network cards like the Mellanox ConnectX series incorporate em-

bedded CPU cores to manage new functions, running firmware on the embedded CPU.

For instance, the DCQCN congestion control protocol is implemented in firmware on

the Mellanox ConnectX-3 network card and is only hardened into hardware on the Mel-

lanox ConnectX-4 network card. However, these embedded CPU cores are not designed

for high-speed packet processing and may become performance bottlenecks. Moreover,

as new functions are added, these cores may increase processing load over time, exac-

erbating performance bottlenecks. Lastly, these embedded CPU cores typically need

to be programmed through firmware updates of the network card, which often require

programming by the network card manufacturer, thus slowing down the deployment of

new functions.

Therefore, for cloud service providers, constructing programmable network cards

based on dedicated chips is often not feasible, and sufficient programmability needs to

be introduced on the data plane.

2.3.2 Network Processor (NP)

As early as the 1990s, network processors were extensively used in routers and

switches to provide performance and flexibility. Modern network processors used in

data centers generally consist of queues, packet processing cores, flow processing cores,

acceleration dedicated circuits, and control cores. Unlike the embedded CPUs running

firmware in dedicated chips, the packet processing cores and flow processing cores of

network processors are much more powerful.

As shown in Figure 2.8, a typical network processor serving as a switch receives

input from the network. To provide Quality of Service (QoS), the network processor

supports classifying input packets according to rules, or classifying packets obtained

from stateless processing by the packet processing core, determining priority and queue

number, and entering the corresponding task queue. Each task queue may be associated

with one or more sets of flow processing cores. The flow processing cores take tasks

from the associated queue in turn, perform stateful flow processing; the processing re-

sults enter the output queue, and after another set of packet processing cores’ stateless
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processing, they are output to the network. In the scenario of a host network card, the

network processor not only needs to process network packets, but also needs to interact

with the host. This includes processing data send requests from the host and receive

host data requests from the network. When the host receives these requests, they enter

the task queue like the input packets and queue up for processing by the flow process-

ing cores. Sometimes, the flow processing core’s processing of a packet depends on

the result of DMA from the host memory (for example, RDMA one-sided read request

needs to fetch the corresponding data from the host memory, then form a packet to send

a response) or the processing of the next packet of the same flow (for example, Web

Application Firewall (WAF) and seven-layer load balancer that can parse HTTP proto-

col). For this reason, network processors generally provide a request hang-up function,

that is, submit the intermediate state and dependencies of processing to the scheduler,

and let the scheduler reprocess the request when the dependencies are satisfied.

Figure 2.8 General architecture of a network processor.

Network processors can process network packets and host requestsmore efficiently

than general-purpose processors because they have hardened many packet processing

functions into hardware logic.

Firstly, in terms of Quality of Service (QoS) schedulers, hardware schedulers can

implement a centralized First-Come-First-Serve (c-FCFS) scheduling model, while the

Receive Side Scaling (RSS) technology of network cards, which dispatches based on

connection hash, attempts to simulate a distributed First-Come-First-Serve (d-FCFS)

model [133-134] . In centralized scheduling, the central scheduler maintains a scheduling

queue and assigns the head task to the processor that has just completed the previous

task. In distributed scheduling, the central scheduler evenly distributes requests to the

queues of each processor, and each processor can only process its own queue, so there

may be situations where some processor queues are not empty while other processors

are idle. Queueing theory shows that c-FCFS has a more balanced load across cores
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than d-FCFS, and the average delay and tail latency ① are also lower. Moreover, the

RSS technology of network cards often cannot accurately simulate the d-FCFS model,

because packet processing may be stateful, and in many cases, the same connection

needs to be assigned to the same processor core. Only when the number of connections

is large and the number of packets per connection is the same, can the d-FCFS model be

simulated; but in reality, the number of packets per connection often shows a long-tail

distribution, at which point the load on the processor cores is unbalanced. Theoretical

analysis [135] shows that the degree of load imbalance under a long-tail distribution is

directly proportional to the number of processor cores. For example, for a network pro-

cessor with 64 stream processing cores, if the d-FCFS method of allocating connections

based on hash is used, the load of the highest-loaded core under a long-tail distribution

is 6 times the average core load.

Secondly, many commonly used modules of network processors, such as packet

parsing, lookup tables, data structures, timers, DMA engines, etc., are implemented

in hardware. If these lookup tables and data structures are implemented in software,

they will consume a large number of instructions, affecting data plane processing per-

formance. For example, setting and triggering a timer in software requires about 200

instructions, and parsing a TCP/IP protocol packet requires about 100 instructions [124] .

From a latency perspective, in a 1 GHz network processor, if the packet transmission

delay needs to be controlled within 1.5 𝜇s, assuming the PCIe delay is 0.3 𝜇s and the net-
work data link layer (MAC) delay is 0.2 𝜇s, and each packet is processed serially within
the programmable network card, then the number of instructions for software to process

each packet cannot exceed 1000. From a throughput perspective, if line-rate processing

of 64-byte small packets under a 40 Gbps network is required, 60 M packets need to be

processed per second. Assuming the network processor has 64 processing cores, each

core can execute 1 G instructions per second, then the average number of instructions

per packet per processing core cannot exceed 1000. Therefore, saving the number of in-

structions for packet processing is important for both latency and throughput. Network

processors greatly alleviate the burden of packet processors and stream processors by

implementing common data structures and algorithms in hardware. These hardware

modules usually use on-chip network interconnection with the processing cores, allow-

ing the cores to call these modules at any time during processing.

Thirdly, the thread scheduling and context management of the stream processing
①Tail latency refers to the highest latency in a set of latency samples. For statistical stability, latency samples

are usually sorted from small to large, and then the latency at the 99%, 99.9% or other percentile is taken as the tail
latency.
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cores within the network processor are implemented in hardware, so fine-grained la-

tency hiding can be achieved. For example, if a stream processing core calls a DMA

operation that takes a long time, or needs to wait for a timer, the hardware will automat-

ically save its context (including registers and the state of the stream being processed),

put the thread into the not-ready queue, and switch to the next thread in the ready queue;

if the ready queue is empty and the number of concurrent threads has not reached the

hardware limit, it can take the next task from the task queue and create a new thread.

When the DMA operation returns or the timer is triggered, the thread in the not-ready

queue is switched to the ready queue. Most network processors use the non-preemptive

cooperative scheduling described above. To support strict priority QoS guarantees and

to fully utilize processing capabilities to handle low-priority traffic when high-priority

traffic is low, some network processors have preemptive scheduling capabilities. Unlike

CPUs on hosts, network processors implement the context management and schedul-

ing functions of the operating system in hardware, greatly reducing the overhead of

context switching compared to CPUs. In data center scenarios, the microsecond-level

latency hiding of CPU applications has become an increasingly important issue [6] , and

the ”hardware operating system” design of network processors can also provide some

insights for the design of host CPUs.

Fourthly, the memory hierarchy within the network processor is customized, thus

the efficiency of memory access surpasses that of general-purpose processors, a feature

akin to the architectural advantages of FPGAs. The ”memory wall” problem of general-

purpose processors is well recognized. If all stream processing cores read and write

stream states from shared memory, the overhead of cache consistency is high, which

imposes a significant burden on the processor’s design. Network processors implement

the binding of packet content to packet processing cores and stream state to stream

processing cores in hardware, and the packet content and stream state are transported

and cached through customized data paths, thereby enhancingmemory bandwidth under

the same chip area and process.

It is worth noting that although network processors are more energy-efficient than

general-purpose processors, they are more challenging to program. Early network pro-

cessors were typically programmed with microcode of a dedicated instruction set, and

due to the absence of a compiler, the abstraction level of the programming language

was akin to assembly. Modern network processors generally use general-purpose CPU

cores (such as ARM and MIPS) as packet processors and stream processors, hence

they can leverage mature compilers and development tool chains, and program in C
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language. The hardened functions in programmable network cards are invoked in the

form of library functions, similar to atomic operations and vector operations on In-

tel CPUs. Compared with general-purpose processors, the difficulty of programming

modern programmable network cards primarily lies in the fact that developers need to

invest time in understanding these proprietary library functions and the architecture of

the network card, and cannot directly use mature code based on frameworks such as

DPDK on general-purpose processors.

In terms of performance, the most significant issue with network processors is that

the performance of a single core is low, leading to two implications. First, stateful

streams are often mapped to a single processing core or thread to prevent state fragmen-

tation and out-of-order processing within a single stream. Even though some network

processors support dividing stateful processing intomultiple stages and processing them

in a multi-core pipeline, the number of pipeline stages is constrained by hardware and

stream processing logic dependencies. Therefore, for stateful processing, the packet

throughput of a single stream cannot exceed several times the single-core processing

capacity of the network processor. The second implication of low single-core perfor-

mance is that in order to support higher network bandwidth, the number of processing

cores must grow linearly, which not only increases the chip area and power consump-

tion, but also poses challenges to the design of core interconnection, memory hierarchy,

and on-chip networks. At network speeds of 40 Gbps and above, the number of cores in-

creases significantly. The on-chip network and scheduler for dispersing and collecting

packets become increasingly complex and inefficient. The entire process of delivering

packets to the processing core, processing packets, and then sending them to the net-

work often requires 10 𝜇s or more of latency. At this point, the latency is significantly
higher than that of dedicated chips, and it exhibits greater variability.

Industry network processor products include Netronome NFP-32xx, Cavium

OCTEON, Tilera, Mellanox NP-5, etc. Some of these network processors only have

stream processing cores and no packet processing cores, but the overall architecture is

similar.

2.3.3 General-Purpose Processor (SoC)

Recognizing the challenges of programming network processors, the industry has

proposed a programmable network card architecture based on general-purpose proces-

sors. This architecture is akin to the ServerSwitch [136] architecture proposed by Mi-

crosoft Asia Research Institute in 2011, comprising a hardware network switch and a
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general-purpose processor. For instance, the Mellanox BlueField [137] programmable

network card consists of a Mellanox ConnectX-5 hardware network card and a multi-

core ARM processor. The hardware network card is the dedicated chip discussed in

section 2.3.1, which implements basic packet parsing, classification, queuing, and for-

warding functions. As depicted in Figure 2.9, the multi-core ARM processor, Mellanox

ConnectX-5 traditional network card, and the network card’s on-board DRAM are in-

terconnected through a PCIe switch. The PCIe switch further connects to the host CPU,

implementing a three-way interconnection between the multi-core processor, traditional

hardware network card, and host CPU. The traditional network card communicates with

the multi-core ARM processor through the DRAM on the programmable network card

board. The hardware network card can communicate with the host CPU and the multi-

core ARM processor through the host DRAM. The typical packet reception process

is: the traditional network card sends the received packets to the DRAM on the pro-

grammable network card board. The multi-core ARM processor retrieves the packets

from the DRAM, processes them, and then sends them to the DRAM of the host CPU.

Figure 2.9 Architecture of a programmable network card based on a general-purpose pro-
cessor.

Network cards based on multi-core SoCs utilize a large number of embedded CPU

cores to process packets, trading off some performance to offer better programmabil-

ity. The SoC architecture, based on multi-core general-purpose processors, shares many

similarities with the network processor (NP) architecture, and is thus often categorized

as the same type of architecture. However, they have many differences in reality. Com-

pared to network processors, multi-core SoCs are easier to program, meaning they can

adopt standard DPDK code and operate in a familiar Linux environment. Existing net-

work function code based on the host CPU can also be easily cross-compiled to run

on multi-core SoCs, while the code of network processors generally needs to be rewrit-

ten. Nevertheless, the general-purpose processor cores inmulti-core SoCs communicate
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with traditional network cards using off-chip DRAM, which is less efficient than the ac-

cess to on-chip high-speed caches in the NP architecture. Table 2.1 compares the SoC

and NP architectures of programmable network cards in data centers.
Table 2.1 Comparison of multi-core general-purpose processor and network pro-
cessor architectures. The numbers come from white papers of programmable net-
work card manufacturers. The actual application performance is affected by the
complexity of the application and may not reach the theoretical performance.

Comparison item Multi-core general-purpose pro-
cessor (SoC)

Network processor (NP)

Instruction type Standard ARM / MIPS instruction
set

Extended ARM / MIPS instruction
set

Operating system General-purpose operating system
(such as Linux)

No operating system or customized
operating system

Operating system, paging, etc. Supported Generally not supported
Context switch and scheduling Software operating system Hardware
Locks, timers, etc. Software Hardware
On-board/core communication Shared memory Custom data path
Packet buffer Off-chip DRAM On-chip high-speed cache
Packet processing framework General (such as DPDK) Dedicated
Multi-core queuing model d-FCFS (hardware dispatch) c-FCFS (hardware scheduling)
Average processing latency About 5 𝜇s Less than 2 𝜇s
Single-core processing capacity About 3 M pps About 1 M pps
Number of processor cores About 8 About 64
Total packet processing capacity About 24 M pps About 64 M pps
Power consumption 10 W to 20 W

As discussed in the preceding section on network processors, both multicore

System-on-Chip (SoCs) and network processors are constrained by single-core perfor-

mance. Although the single-core performance of multicore SoCs surpasses that of net-

work processors, the inter-core communication overhead of multicore SoCs is higher

than the hardware pipeline composed of network processor processing cores. Conse-

quently, each packet in multicore SoCs is generally processed to completion on a single

processor core (run-to-completion). Therefore, the single-stream performance is typi-

cally on the same order of magnitude, around 5 Mpps (packets per second).

In terms of core number increase, since multicore SoCs mostly adopt a distributed

first-come-first-serve (d-FCFS)model, if software does not utilize inter-core work steal-

ing techniques, the imbalance of processor load will become increasingly severe with

the rise in core number.

In terms of latency, due to the load imbalance amongmulticore SoC processors, and

the non-deterministic latency brought about by the general operating system and general

shared memory hierarchy used bymulticore SoCs, such as operating system scheduling,

interrupts, and cache misses, the latency stability of multicore SoCs is generally poorer

than that of network processors, and the tail latency is generally higher than that of
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network processors.

Therefore, although the multicore SoC method has a familiar programming model

and good application compatibility, its evident weaknesses are single-stream perfor-

mance, higher latency, and poorer scalability at higher network speeds.

From an architectural perspective, multicore SoCs are most similar to host CPUs,

as they both use general-purpose processors. However, as shown in Table ??, whether

in terms of cost or performance power consumption, the general-purpose processors

used in programmable network cards have clear advantages. In addition, as discussed

in Chapter 1, in cloud computing data centers, host CPUs can be sold, and their poten-

tial selling price is much higher than the hardware price of a single CPU component.

Therefore, using general-purpose processors embedded in programmable network cards

in data centers is still advantageous compared to the traditional method of using host

CPUs.

2.3.4 Field-Programmable Gate Array (FPGA)

Intuitively, an FPGA is a large collection of electronic components that can be pro-

grammatically reconfigured. These components include logic gates (such as AND, OR,

NOT gates), registers, adders, static memory (SRAM), etc., and users can customize

their connections to form different circuits. Figure 2.10 illustrates the basic computing

unit of an FPGA, which is a logic element composed of programmable logic gates and

registers.

LUT

Adder

Register

Clock

a b c y

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Figure 2.10 The basic computational unit of FPGA – logic element.

Modern FPGAs, in addition to basic elements, are incorporating an increasing

number of DSPs and hard cores (hard IP) to enhance the performance of multiplica-

tion, floating-point operations, and access to peripheral devices. The hard cores on the
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FPGA can support DDR, Ethernet, PCIe, etc., to connect to the on-board DRAM, data

center network, host PCIe slot, etc. Figure 2.11 presents the logic diagram of the FPGA

board used in this paper.

FPGA

DRAM

Ethernet 
Port

Ethernet 
Port

PCIe

Figure 2.11 Logic diagram of the FPGA board.

General-purpose processors represented by CPUs usually adopt the von Neumann

architecture and its variants. In the von Neumann architecture, since the processor (such

as a CPU core) may execute any instruction, it requires an instruction memory, decoder,

various instruction operators, and branch jump processing logic. Due to the complexity

of the instruction flow control logic, it is impossible to have too many independent

instruction flows, so both GPUs and CPUs can use SIMD (Single Instruction Multiple

Data) to allow multiple processing units to process different data at the same pace. The

function of each logic unit in the FPGA is determined at the time of reprogramming

(burning), so no instructions are needed.

In the von Neumann architecture, memory is used for two purposes: saving state

and communication between processors. In the von Neumann architecture, all proces-

sors share memory, so access arbitration is needed; to take advantage of access locality,

each processor has a private cache, which requires maintaining consistency between

caches of execution units. For the need to save state, there are a large number of on-chip

memory (BRAM) modules in the FPGA, each of which can be connected to the logic

module that needs to use the corresponding data, without unnecessary arbitration and

cache. For the need for communication between logic modules, the connection between

each logic module and the surrounding logic modules in the FPGA has been determined

at the time of reprogramming (burning), and there is no need to communicate through

shared memory.

Because the data path is customized, the FPGA can simultaneously utilize pipeline
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parallelism ①, data parallelism ② and request parallelism ③ to reduce latency and in-

crease throughput. The FPGA can organize a large number of processing units into a

computation flow graph according to the dependency of data and control. Those with

dependencies are pipeline parallel, and those without dependencies are data parallel.

This will be discussed in detail in Chapter 4. The FPGA can also build a scheduler to

achieve flexible request parallelism, maintain load balance among processing units, and

hide external latency in request processing. This will be discussed in Chapter 5.

The utilization of pipeline parallelism by instruction-based GPUs and CPUs ④ is

constrained. Although the instruction processing core is pipelined, its depth is limited;

due to the high communication overhead between cores, the efficiency of using multiple

cores to form a pipeline is often low.

The parallel computing units of the GPU and the vector instructions of the CPU can

exploit data parallelism. However, the data parallelism in both the GPU and the CPU is

in the SIMD (Single Instruction Multiple Data) mode, the data being processed in par-

allel must perform the same operation, and there can be no data dependency between

parallel computations. But in many applications, the operations required for different

data are different (for example, in firewalls, the packet fields and matching methods

matched by different rules are different). If you want to implement data parallelism

in SIMD mode, each computing unit needs to traverse all possible operations, thereby

wasting some resources for unnecessary operations. In addition, many operations in

packet processing have data or control dependencies, and the speedup that can be ob-

tained by using data parallelism alone is limited. In the FPGA, as long as the data and

control dependencies can be determined at compile time, the computation flow graph

can be compiled into a pipeline composed of hardware logic. Finally, many SIMD

instructions have restrictions on data alignment and data types, while the FPGA can

implement flexible data paths and data types.

Request parallelism cannot reduce the processing latency of a single packet, but

it can increase the system’s throughput, thereby reducing costs. Both GPUs and CPUs

can utilize request parallelism. The computing units within the same group of a GPU
①A pipeline consists of several stages, each task is processed in turn through each stage. There is generally a

dependency between the processing of each stage. At any moment, each stage is processing different tasks.
②In this paper, data parallelism refers to parallel processing of unrelated data, such as vector dot product can use

data parallelism, different firewall rules can also be processed in parallel. Note that this is different from the term
”data parallelism” in distributed machine learning.
③In this paper, processing a network packet or an operation offloaded by the host CPU to the accelerator card is

called a work request, which is a term in RDMA. Request parallelism refers to the concurrent execution of different
work requests. For ease of understanding, the paper often uses data packets instead of work requests.
④In this section, CPU refers to general-purpose processors, including server host CPUs and processors on SoC

programmable network cards.
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can process different packets separately, however, these processing units in the SIMD

architecture must follow a unified pace and perform the same operations. Since differ-

ent packets require different processing operations, as discussed in the data parallelism

above, resources need to be wasted to perform unnecessary operations. The computing

units in different groups of a GPU can independently process different packets, but the

programming model of the GPU usually requires these packets to be input and output

together, increasing the input and output latency. Although each core of a CPU can

independently receive and send packets from the network card, due to the high commu-

nication cost between the CPU and the network card, packets often need to be received

and sent in batches to maintain high throughput. When packets arrive one by one in-

stead of in batches, FPGAs can achieve lower latency compared to GPUs and CPUs. In

addition, although different cores of a CPU can asynchronously process different pack-

ets, load balancing between cores is a challenge. Table 2.2 summarizes the utilization

capabilities of FPGAs, GPUs, and CPUs for pipeline, data, and request parallelism.
Table 2.2 Different architectures’ utilization of pipeline, data, and request paral-
lelism.

Pipeline Parallelism Data Parallelism Request Parallelism
Example Sequentially processing

MAC layer, IP layer, TCP
layer, application layer of
packets; calculating hash

Matching firewall rules;
calculating checksum;
vector calculation

Processing different
packets; key-value oper-
ations

FPGA Can utilize: Custom pipeline Can utilize: Custom par-
allel processing units

Can utilize: Custom
scheduler

GPU Limited utilization: Instruc-
tion processing pipeline,
pipeline composed of multi-
ple cores

Limited utilization:
SIMD vector operations

Can utilize, but with sig-
nificant latency issues

CPU Limited utilization: Instruc-
tion processing pipeline,
pipeline composed of multi-
ple cores

Limited utilization:
SIMD vector instruc-
tions

Can utilize, but with la-
tency and load balancing
issues

Therefore, compared to instruction-based processors such as GPUs and CPUs, FP-

GAs have a latency advantage. For network packet processing, the processing latency

of FPGAs can reach microseconds or even nanoseconds. If using a GPU, to fully utilize

the computing power of the GPU, the batch size cannot be too small, and the latency

will be at the millisecond level, which is more than 1000 times that of the FPGA.① For

the host CPU, even using a high-performance packet processing framework like DPDK,

the latency is 4 to 5 microseconds, which is an order of magnitude higher than that of

the FPGA. Amore serious problem is that the latency of the general-purpose CPU is not
①This is an estimate based on the existing GPU batch processing model network function processing framework.

If the GPU supports a streaming processing programming model, its latency will be significantly reduced.

51



Chapter 2 Introduction to Data Centers and Programmable Network Cards

stable enough. For example, when the load is high, the forwarding latency may rise to

tens of microseconds or even higher; the clock interrupt and task scheduling in modern

operating systems also increase the uncertainty of latency. In data centers, latency, espe-

cially tail latency, is very important. The latency of FPGA processing network packets

is at the nanosecond level, and even if it needs to access the host memory through PCIe,

it only requires sub-microsecond PCIe latency.① In summary, for streaming computing

tasks, FPGAs have inherent advantages over GPUs and CPUs in terms of latency.

In terms of delay, the network card receives data packets to the CPU, and the CPU

sends them to the network card. Even using a high-performance data packet processing

framework like DPDK, the delay is still 4 to 5 microseconds. A more serious problem

is that the delay of the general CPU is not stable enough. For example, when the load is

high, the forwarding delay may rise to tens of microseconds or even higher; the clock

interrupt and task scheduling in modern operating systems also increase the uncertainty

of the delay.

Although the GPU can also process data packets with high performance, the GPU

does not have a network port, which means that the data packets need to be received by

the network card first, and then the GPU is allowed to process them. In this way, the

throughput is limited by the CPU and/or network card. Not to mention the latency of

the GPU itself.

In summary, the main advantage of FPGA in the data center is its stable and ex-

tremely low latency, which is suitable for stream-based compute-intensive tasks and

communication-intensive tasks.

FPGA is not a panacea, and there are several technical challenges, as shown in

Table 2.3.

Firstly, in comparison to CPUs or GPUs, FPGAs typically possess lower clock fre-

quencies and smaller memory bandwidths. For instance, the typical clock frequency of

an FPGA is approximately 200MHz, which is an order of magnitude slower than a CPU

(2 to 3 GHz). Similarly, the bandwidth of a single on-chip BRAM memory or external

DRAM on an FPGA is typically 2 to 10 GBps, while the memory bandwidth of an In-

tel Xeon CPU is about 60 GBps, and a GPU can reach hundreds of GBps. However,

CPUs or GPUs only have a limited number of cores, which restricts parallelism. FPGAs

have inherent massive parallelism. Modern FPGAs may have millions of logic units,

hundreds of K bits of registers, thousands of on-chip BRAMs (each with a capacity
①In the future, after Intel launches Xeon + FPGA connected via QPI, the latency between the CPU and FPGA can

be reduced to below 100 nanoseconds, which is on the same order of magnitude as the latency of the CPU accessing
the main memory.
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Table 2.3 Challenges of using FPGA as a programmable network card.

Compared architecture FPGA challenges Solutions
CPU/GPU/NP/SoC Low clock frequency Utilize the massive parallelism in-

side FPGA
CPU/GPU Low DRAM memory bandwidth Customize data path, parallel use

of on-chip BRAMmemory, reduce
DRAM usage

CPU/GPU/NP/SoC Hardware description language
programming is complex and
difficult to debug

Programming framework friendly
to software developers based on
high-level synthesis technology

CPU/GPU/SoC The software and hardware ecosys-
tem is relatively closed

Open hardware platform, program-
ming framework and IP core

CPU/GPU/NP/SoC The chip area is limited and not
suitable for scenarios with com-
plex logic

Separate control plane and data
plane; data plane based on cus-
tomized instructions

CPU High PCIe latency when accessing
main memory

Design efficient data structures
and use out-of-order execution to
achieve latency hiding

CPU Limited PCIe bandwidth when ac-
cessing main memory

Design efficient data structures and
use on-board cache

CPU/GPU/NP/SoC Need to rewrite for upgrades, inter-
rupt service

FPGA operating system that sup-
ports dynamic reconfiguration and
seamless service upgrades

CPU/NP/SoC High task switching overhead Spatial multiplexing, not time-
division multiplexing

ASIC Some compute-intensive loads are
inefficient

Harden general modules into hard
cores

of several MB), and thousands of digital signal processing (DSP) modules. Theoreti-

cally, each of these can work in parallel. Therefore, there may be thousands of parallel

”cores” operating inside an FPGA chip simultaneously. Although the bandwidth of a

single BRAM may be limited, if thousands of BRAMs are accessed in parallel, the to-

tal memory bandwidth can reach several TBps! Hence, to achieve high performance,

programmers must fully utilize this massive parallelism.

Secondly, traditionally, FPGAs are programmed using hardware description lan-

guages (HDLs) such as Verilog and VHDL. These languages have a lower level of

abstraction, are difficult to learn, and programming is complex. Although high-level

hardware description languages like Chisel [53] have gained popularity in recent years,

they still require programmers to have a basic knowledge of digital logic design and

a hardware design mindset. Therefore, the software programmer community has been

distant from FPGAs for many years [54] . To simplify FPGA programming, the industry

and academia have developed numerous high-level synthesis (HLS) tools and systems,

attempting to convert programs in high-level languages (mainly C) into HDL. How-

ever, they either do not fully utilize the massive parallelism in FPGAs, or have high

latency, or are merely a supplement to the hardware development toolchain, and are
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therefore not suitable for network function processing. A solution to this problem will

be proposed in Chapter 4.

Thirdly, traditionally, the FPGA hardware developer community has been rela-

tively closed. Firstly, the open-source ecosystem of FPGA is underdeveloped, leading

FPGA developers to often need to implement generic modules (IP cores) from scratch

or purchase them from third-party vendors. The cost of developing and purchasing

generic modules deters many small and medium-sized enterprises and academic re-

searchers. Secondly, the high price of purchasing FPGA boards in small quantities

weakens the cost advantage of FPGA compared to other architectures. In recent years,

with FPGA becoming a general-purpose accelerator in data centers, FPGA manufac-

turers and academia have been continuously promoting the construction of the FPGA

ecosystem. For instance, the NetFPGA open network programming platform [138] , Xil-

inx’s SDx programming framework [58] , and the P4 cross-platform network program-

ming language [106] . Major cloud service providers have also launched on-demand

FPGA cloud services and IP core markets, so developers no longer need to spend a high

one-time cost to purchase boards and reinvent the wheel. The network element library

in Chapter 4 and the key-value data structure in Chapter 5 are beneficial supplements

to the FPGA ecosystem.

Fourthly, the logic scale implemented by FPGA with digital circuits is limited by

the number of FPGA reconfigurable units, which in turn is limited by the chip area.

Therefore, FPGA is not suitable for implementing very complex logic. For complex

logic situations, two solutions are generally adopted together. Firstly, distinguish be-

tween the control plane and the data plane, implement the data plane in FPGA, and

implement the control plane on a general-purpose processor. For example, Microsoft’s

virtual network accelerator [10] sends new connections to the control plane on the host

CPU, where software determines the processing rules and offloads the rules to the FPGA

data plane, so that subsequent packets of this connection can be processed by FPGA. The

separation of the control plane and the data plane is a design idea that runs through this

article. Compared with programmable network cards using general-purpose processors,

using FPGA increases the programming complexity of separating the control plane and

the data plane. Secondly, extract common operations from complex logic and imple-

ment customized instructions with digital logic. Complex logic is implemented through

a series of customized instructions, which are stored in memory and do not occupy re-

configurable units. Microsoft’s virtual network accelerator [10] has designed customized

match-operation tables. Microsoft’s neural network processor [139] has customized vec-
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tor processing instructions for neural network calculations. The atomic operations and

vector operations in Chapter 5 are examples of customized instructions.

Fifthly, to achieve fine-grained cooperative processing between FPGA and CPU,

communication via the PCIe bus is necessary. This is because the DRAM capacity on

the FPGA board is generally much smaller than the host DRAM, necessitating the stor-

age of large-scale data structures on the host DRAM and access via the PCIe bus. How-

ever, the latency of the PCIe bus is in the order of hundreds of nanoseconds, which is an

order of magnitude higher than CPU access to main memory. The effective bandwidth

of Gen3 x8 is about 6 GB/s, which is an order of magnitude lower than CPU access

to main memory. Therefore, accelerated applications on programmable network cards

need to design efficient data structures, save memory access times, use out-of-order ex-

ecution technology to hide latency, and fully utilize the cache of on-chip BRAM and

on-board DRAM. This is the theme of Chapter 5.

Sixthly, compared with instruction-based processors, FPGA has a higher task

switching overhead. On one hand, although FPGA can achieve data plane task switch-

ing without interruption through dynamic reconfiguration, this requires fixing a part

of the resources at the physical location on the FPGA chip, which restricts the global

optimization of FPGA placement and routing. Additional logic is also needed to as-

sist dynamic reconfiguration, which brings about the area overhead of FPGA. On the

other hand, dynamic reconfiguration of FPGA takes tens of milliseconds, much longer

than the time for CPU task switching (CPU task switching based on general-purpose

operating systems is generally in the order of microseconds, CPU task switching based

on dedicated operating systems is generally in the order of hundreds of nanoseconds,

and task switching based on dedicated processors can be completed in tens of nanosec-

onds). This makes FPGA unable to implement fine-grained time-sharing multiplexing

like CPUs. Therefore, the current multi-user multiplexing of FPGA is mainly spatial

rather than temporal, similar to allocating different CPU cores to different virtual ma-

chines. In addition, during FPGA dynamic reconfiguration, user logic cannot work, so

the CPU needs to replace FPGA for processing during this period, or the FPGA service

needs to be suspended, which affects the quality of service. The FPGA programmable

network cards discussed in this article are all for the first-party use of data center infras-

tructure, not for third-party use that is publicly sold, so there is almost no need for dy-

namic task switching. The main challenge is to use dynamic reconfiguration to achieve

service upgrades and to ensure service quality during the upgrade. The author partic-

ipated in (but did not lead) a project called Feniks [140] and the recent AmorphOS [141]
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aimed to solve this problem.

Seventhly, some types of workloads are compute-intensive, and their efficiency

when implemented in FPGA is significantly lower than that of dedicated chips. The

first type is standardized operations such as encryption and decryption. For example,

the RSA asymmetric encryption based on ASIC of the Intel QuickAssist acceleration

card [142] is about 10 times higher in throughput than the FPGA-based implementation

in Chapter 4. The second type is common data structures such as lookup tables. For ex-

ample, Content-Addressable Memory (CAM) is the basis of many concurrent operation

schedulers and data structures. CAM can be implemented with tri-state gates in dedi-

cated chips, but its efficiency is lower when implemented in FPGA. The future work

outlook in Section 7.2.1 will propose to learn from the architecture of network proces-

sors and harden these operations that are not efficient when implemented in FPGA.

Finally, it should be pointed out that from the perspective of business and supply

chain, FPGA has certain disadvantages. The retail price of FPGA is high, and the autho-

rization of the development tool chain is also expensive. Therefore, if the application

scale is not large enough, the amortized cost of hardware and tool chain may not be ad-

vantageous compared to programmable network cards based on network processors or

general-purpose processors. For companies with very large application scales, there are

only two main manufacturers of FPGAs for data centers at present, and the supply chain

security has a large variable. The secondary development cost of switching between the

two FPGAs is high, so self-developed network processors or embedded general-purpose

processor chips may be a lower and more controllable choice in the long run. FPGA, as

a compromise between general-purpose processors and dedicated chips, is suitable for

scenarios with medium application scale and high uncertainty of application scenarios.

2.4 Application of Programmable Network Cards in Data Centers

Cloud service providers such as Microsoft Azure, Amazon AWS, Alibaba Cloud,

Tencent Cloud, and Huawei Cloud have successively publicized their data center accel-

eration practices based on programmable network cards.

2.4.1 Microsoft Azure Cloud

At present, Microsoft’s primary uses for deploying customized hardware in data

centers include computation and infrastructure. In terms of computational acceleration,

first, since 2013, it has been used for document selection and sorting algorithms for
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Bing search [48] . Since 2016, hardware microservices have been used to consolidate

unused resources on multiple FPGAs onto fewer FPGAs, improving FPGA utilization.

Second, it is used for compression and encryption algorithms [143] , initially only for

Bing search, and later extended to Office 365, Cosmos / Azure data lake, Onedrive,

cloud storage and other services. Third, since 2015, it has been used for machine learn-

ing inference [139,144-146] , supporting not only deep learning models but also traditional

machine learning models. Fourth, since 2016, it has launched FPGA-supported virtual

machine instances, renting FPGA computing power to third-party customers.

The primary uses for infrastructure include networking and persistent storage. In

terms of networking, since 2015, it has been used for network virtualization accelera-

tion [10] . For persistent storage, FPGA is used to accelerate Azure cloud storage [147] .

On one hand, it is used on the storage backend nodes, using the compression and en-

cryption algorithms of the computational acceleration part to improve throughput, adopt

better (but more computationally intensive) compression algorithms to improve com-

pression rate, and save storage space; on the other hand, it is used on the storage frontend

nodes and computing nodes’ storage services, accelerating the data plane of the storage

protocol stack through FPGA, realizing data plane bypassing the hypervisor and being

able to share storage resources according to the quality of service guarantee.

Considering the above workloads that require acceleration, Microsoft’s choice of

custom acceleration hardware for data centers is primarily based on three aspects: the

architecture of the custom hardware, the connection range between custom hardware,

and the communication method between the CPU and the custom hardware.

In terms of custom hardware architecture, FPGA is suitable for both compute-

intensive and communication-intensive workloads, and it has low latency. The cost

per unit of computing power is lower in large-scale deployment, but the programming

complexity is high; GPU is suitable for accelerating compute-intensive workloads, is

simpler to program than FPGA, but has higher latency; even in large-scale deployment,

the cost per unit of computing power remains high; dedicated ASIC chips are suitable

for both compute-intensive and communication-intensive workloads, have the lowest

latency, the highest computing power per unit power consumption, but have poor flex-

ibility after functionalization. For instance, the above workloads expanded from Bing

search to compression encryption, network, storage, machine learning, deep learning,

etc., which is a gradual development process. The design of dedicated chips is difficult

to achieve in one step, and redesigning a dedicated chip requires one to two years and

tens of millions of dollars in non-recurring engineering costs (NRE). Based on the above
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considerations, Microsoft Azure Cloud uses FPGA as the general custom hardware in

the data center to accelerate various workloads.

In terms of the communication method between the CPU and the custom hardware,

although coherent memory is easy to program, it is not easy to achieve high efficiency

on the architecture based on x86 CPU; the bandwidth and latency of network access are

relatively limited; Direct Memory Access (DMA) as a standard communication mode

on the PCIe bus, becomes the communication method chosen by Microsoft FPGA. In

terms of the connection range between custom hardware, the performance of a single

machine is not scalable; the bandwidth of custom interconnects within a rack can be

higher, but the cost of adding custom interconnects is high; Using the existing network

interconnection in the data center can achieve the maximum scalability, lower cost,

and the bandwidth and latency can meet the needs of most applications. Historically,

Microsoft’s FPGA deployment has tried the above three connection methods between

custom hardware, which can be roughly divided into three development stages [148] :

Figure 2.12 Microsoft’s FPGA-based programmable network card.

This represents Microsoft’s third-generation FPGA deployment architecture, and

it is also the architecture currently used for large-scale deployment of ”one FPGA per

server”. The original intention of FPGA to reuse the host network is to accelerate the

network and storage, and the more far-reaching impact is to extend the network connec-

tion between FPGAs to the scale of the entire data center, making it a truly cloud-scale

”supercomputer” [148] . In the second-generation architecture, the network connection

between FPGAs is limited to within the same rack, and it is difficult to scale up the

dedicated network interconnection between FPGAs, and the overhead of forwarding

through the CPU is too high.

In the third-generation architecture, FPGAs communicate with each other through

the Lightweight Transport Layer (LTL) protocol. The latency within the same rack is

within 3 microseconds; 1000 FPGAs can be reached within 8 microseconds; all FP-

GAs in the same data center can be reached within 20 microseconds. Although the
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second-generation architecture has lower latency within 8 machines, it can only access

48 FPGAs through the network. In order to support a wide range of FPGA communi-

cation, the LTL in the third-generation architecture also supports the PFC flow control

protocol and the DCQCN congestion control protocol. FPGAs interconnected through

high-bandwidth and low-latency networks form a data center acceleration plane be-

tween the network switching layer and traditional server software. In addition to the

network and storage virtualization acceleration required by each server providing cloud

services, the remaining resources on the FPGA can also be used to accelerate Bing

search, deep neural networks (DNN) and other computing tasks.

At the NSDI’18 conference, Microsoft published its practice of using FPGA-based

programmable network cards for network virtualization acceleration since 2015 [10] .

With the programmable network card, the throughput between Azure virtual machines

can reach up to 31 Gbps. During the same period, the network virtualization implemen-

tation of Google Cloud Platform (GCP) based on host CPU software [149] could only

reach a throughput of 16 Gbps. Amazon AWS’s Nitro network virtualization accelera-

tion based on general-purpose processors [150] can only reach a throughput of 23 Gbps.

Due to the limitation of the single-core performance of the general-purpose processor,

the throughput of a single TCP stream of AWS can only reach 10 Gbps, while the single-

stream throughput of Microsoft Azure and Google Cloud Platform can reach the peak

of the virtual machine. This is consistent with the discussion on the architecture of

programmable network cards in Section 2.3.

In terms of delay, using the Linux operating system TCP/IP protocol stack, Mi-

crosoft Azure achieved an average inter-VM delay of 10 𝜇s, while the kernel bypass
DPDK [14] can achieve an average delay of 5 𝜇s. During the same period, the average
delay of the Google Cloud Platform was 20 𝜇s, and the average delay of Amazon AWS

was 28 𝜇s. After using FPGA acceleration, the tail delay of Microsoft Azure is more

obvious than the average delay. For example, at the 99.9% percentile, Azure’s delay is

20 𝜇s, the delay of the Google Cloud Platform based on the host CPU is 75 𝜇s, and the
delay of Amazon AWS based on the programmable network card general processor is

32 𝜇s. At the 99.99% percentile, Azure’s delay is 25 𝜇s, while the Google Cloud Plat-
form and Amazon AWS both reach or approach 100 𝜇s. This is because the delay of
hardware pipelining is more controllable than software processing, and in software pro-

cessing, the latency instability is higher on the host CPU running the customer virtual

machine than on the general processor of the programmable network card.
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2.4.2 Amazon AWS Cloud

At the Re:Invent conference in December 2017, Amazon AWS Cloud released

a computing acceleration architecture called ”Nitro” [151] . According to the informa-

tion released by Amazon at the 2017 Re:Invent conference and the 2018 AWS Sum-

mit [150,152] , AWS uses custom ASICs to implement various acceleration and security

features. Initially, AWS weighed between FPGA and ASIC architectures and decided

to adopt the ASIC solution. For this, in January 2015, Amazon acquired ASIC design

company Annapurna Labs for more than $3 billion [153] , which is known for designing

system-on-chip (SoC) based on ARM cores.

The development of the Nitro project was phased. Similar to Microsoft Azure, the

I/O bottleneck of the virtual machine was first manifested on the virtual network. As

early as November 2013, AWS’s C3 instances introduced a separate network card to

implement enhanced networking, using SR-IOV to allow virtual machines to directly

access the network card, bypassing the virtual switch software in the virtual machine

monitor. This technology helped Netflix achieve a virtual machine network throughput

of 2 million packets per second [154] .

In January 2015, Amazon Web Services’ (AWS) C4 instances started utilizing

hardware-accelerated Elastic Block Storage (EBS). The data of the EBS is stored on

the storage node, while the customer’s virtual machine operates on the computing node,

making this a form of remote storage. For the customer’s virtual machine, it appears

as a virtual storage device, virtualized by the storage management software in the Xen

Dom0 of the virtual machine monitor. C4 instances employ high-performance network

cards as opposed to traditional ones to connect to remote EBS, thereby enhancing per-

formance.

In February 2017, AWS’s I3 instances introduced NVMe local storage and a ded-

icated storage virtualization chip. Previously, customer virtual machines had to access

local storage via the storage management software in the virtual machine monitor. This

was necessary as there could be multiple virtual machines on a single physical server,

and each virtual machine could only access its own portion of the storage space, neces-

sitating isolation. For NVMe storage with high latency and throughput, the overhead of

storage virtualization software is excessive. To address this, the Nitro chip introduced

in the I3 instance implements storage isolation in hardware, allowing NVMe storage

to be directly passed to the customer’s virtual machine through SR-IOV, achieving a

storage performance of 3 million I/O operations per second [155] .
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In November 2017, AWS’s C5 instances significantly altered the virtualization ar-

chitecture of the computing node. Firstly, the remote storage in the C4 instances still

required software to implement virtualization. This could also be implemented in hard-

ware like I3 local storage, but the interface of block storage is more complex than local

storage, making hardware implementation more challenging. Secondly, after the net-

work, remote and local storage have all utilized hardware virtualization, only the inter-

rupt (APIC) function of the data plane and the management function of the control plane

remain in the management software of the virtual machine monitor. The management

function of the control plane is relatively complex, and it is clearly impractical to use

pure digital logic. To offload all virtual networks (VPC), EBS, and virtualization con-

trol planes to the accelerator card, the Nitro ASIC adopts a system-on-chip architecture

based on the ARM core, thereby maintaining the programmability and flexibility of the

data plane, and also offloading the control plane to the accelerator card.

After implementing the Nitro accelerator card, AWS re-engineered a lightweight

virtual machine monitor, Nitro, to replace Xen. The control plane, which was initially

running on Xen Dom0, was transferred to the Nitro ASIC, allowing customer virtual

machines to achieve performance close to that of bare-metal hosts. AWS later intro-

duced bare-metal instances, where customer code runs directly on physical machines,

with all storage and network resources provided by the Nitro card.

The Nitro series chips primarily consist of three chips [150-152] :

1. Cloud network (VPC) and elastic block storage (EBS) acceleration chips, which

connect the data center network on one side and connect to the CPU in the form

of a PCIe card on the other side;

2. Local NVMe storage virtualization chip, which acts as an intermediary between

the CPU and NVMe storage devices;

3. Security chip, used to verify the version of various device firmware in the server,

and to re-flash the firmware to erase traces when switching tenants on bare-metal

servers.

The functions of the Nitro chip can be categorized into three aspects: cost reduc-

tion, performance improvement, and security enhancement. Let’s discuss these in detail.

Saving CPU cores. Network and storage virtualization require a significant

amount of CPU resources to process each network packet and storage I/O request. Ac-

cording to ClickNP [156] , each customer virtual machine’s CPU core needs to reserve

an additional 0.2 CPU cores to implement virtualization. If these functions can be of-

floaded to dedicated hardware, the saved CPU cores can be used to install customer
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virtual machines. Whether considering the price of each CPU core on a public cloud

virtual machine or the hardware cost of each core of a Xeon CPU, significant cost sav-

ings can be achieved with dedicated hardware [10] .

Increasing the maximum number of cores. Saving CPU cores can not only

reduce costs but also increase the maximum number of cores for large virtual machine

instances. Since all major public cloud manufacturers purchase CPUs from the same

manufacturers such as Intel, the maximum number of CPU cores that can be purchased

at the same time is relatively fixed. After virtualization is offloaded to hardware, all

CPU cores are used to run customer virtual machines, so AWS’s M5 instance can reach

up to 96 CPU cores. If hardware offloading is not used, only 80 CPU cores will be avail-

able for customer virtual machines, thereby reducing the attractiveness to customers

pursuing extreme performance.

Increase single-core frequency. Due to power consumption constraints, the

number of CPU cores and the average core frequency are inversely related. Under the

same generation of CPU architecture, CPUswith higher core frequencies generally have

fewer cores. For virtual machine instances with equal core numbers, if traditional soft-

ware virtualization is used, the physical machine will require 1.2 times the number of

CPU cores, which may decrease the average core frequency. For instance, before the

launch of the C5 instance, the 72-core EC2 instance had a CPU base frequency of 2.7

GHz, but the C5 instance virtual machine using the same generation Skylake architec-

ture could achieve a CPU base frequency of 3.0 GHz.

Improve local storage performance. Firstly, on bare metal servers, local NVMe

storage can achieve a throughput of up to 400 K IOPS (I/O operations per second) per

disk. AWS I3 instances have 8 NVMe SSDs, reaching a throughput of 3 M IOPS. For

the common storage virtualization protocol stack, each CPU core can only handle a

throughput of about 100 K IOPS, which means that 30 CPU cores need to be occupied

to allow the virtual machine to fully utilize the throughput of NVMe storage, which is

too costly. Even if there is only one NVMe storage, load balancing among 4 CPU cores

is still a problem [135] . As discussed in section 2.3, because hardware allocation and

processing tasks are pipeline-style rather than simple parallelism of multiple processing

units, hardware can better guarantee Quality of Service (QoS) than multi-core software.

Secondly, in terms of latency, the average latency of NVMe storage on bare metal

servers is about 80 microseconds. Virtualization software not only adds an average

latency of 20 microseconds, but also due to the impact of factors such as operating

system scheduling, interrupts, cache misses, etc., the tail latency under high load can be

62



Chapter 2 Introduction to Data Centers and Programmable Network Cards

as high as 1 millisecond (1000 microseconds). Using hardware offloading can reduce

the average latency by 20%, and reduce the tail latency under high load by more than

90%.

Enhancing the security of bare metal servers. Finally, customer code on

bare metal servers can directly access various hardware devices within the server, and

may even flash firmware of out-of-band server management (BMC) and other com-

ponents [157] . If malicious code is embedded in the firmware and activated when the

next tenant uses the bare metal server, the consequences are unimaginable. In fact, a

large portion of customers choose bare metal servers precisely due to concerns about the

isolation of virtual machines. To provide a safe and consistent hardware environment

when tenants begin using bare metal servers, the Nitro security chip will overwrite the

firmware. Nitro will also perform integrity checks at system startup, which is similar to

UEFI trusted boot technology, but the verification scope includes not only the operating

system bootloader but also hardware firmware.

2.4.3 Alibaba Cloud, Tencent Cloud, Huawei Cloud, Baidu

In 2018, domestic cloud computing service providers in China actively deployed

programmable network cards in data centers. The primary purpose of Alibaba Cloud

and Tencent Cloud deploying programmable network cards is to support bare-metal

servers. Comparedwith virtual machines, bare-metal servers can eliminate the overhead

brought by virtualization, achieving the highest performance under the same hardware

conditions; it is convenient to deploy customers’ own virtualization software (such as

VMWare); it is completely the same as the deployment environment in the customer’s

own data center (on-premises), reducing the migration cost of customers to the cloud;

it is convenient to use hardware that does not support virtualization or has a significant

performance loss after virtualization, such as GPU and RDMA network cards; it does

not share server hardware with other tenants, and the isolation and security are stronger,

which can also meet some customers’ compliance requirements.

The main technical challenge of using bare-metal servers in the public cloud is to

access resources such as virtual networks (VPC) and remote storage (EBS) in the data

center. A simple method is to place several virtual network and storage servers in the

same rack, deploy corresponding software, and configure forwarding rules on the top-

of-rack (ToR) switch, so that all network packets of the bare-metal server pass through

the virtual network and storage server. This method requires additional server resources,

which increases the cost. Another method is to offload the data plane of virtual networks
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and storage to the top-of-rack switch. However, the programming flexibility of the top-

of-rack switch is generally poor [158] , which is not enough to support application layer

protocols of virtual storage and security rules of virtual networks, etc.

Therefore, incorporating a programmable network card into the server has emerged

as the most efficient solution to support bare-metal servers. Alibaba and Tencent have

adopted the SoC solution that combines the FPGA data plane and the multi-core CPU

control plane. In 2018, Alibaba Cloud launched the ”X-Dragon” bare-metal server,

which uses its self-developed MOC card [159-160] to achieve network and storage virtu-

alization similar to AWS Nitro. Tencent Cloud unveiled a programmable network card

solution based on FPGA at APNet’18, primarily used for network virtualization [158] .

Tencent only required 10 hardware engineers to complete the FPGA logic design in

three months, manufacture the programmable network card board in four months, and

deploy it within a year [158] . This is an example of the agile development that can be

achieved with FPGA programming. Tencent is broadening the application scope of

programmable network cards from bare-metal servers to standard virtual machines, and

employs a unified programmable network card architecture for both application scenar-

ios.

Leveraging the technological accumulation of HiSilicon Semiconductor, Huawei

has launched two programmable network cards, which are also used to accelerate

Huawei Cloud’s virtual network. The SD100 series programmable network card [161]

adopts the SoC architecture based on the multi-core ARM64 CPU, and both the data

plane and the control plane operate on the ARMCPU. The IN5500 series programmable

network card [162] employs a network processor (NP) to provide programmability of the

data plane, which can achieve a performance of 100 Gbps. With the programmable

network card, Huawei Cloud launched the C3ne network-enhanced virtual machine in-

stance, which was the first to achieve packet forwarding at the level of tens of millions

per second among domestic cloud manufacturers [163] .

Although Baidu has not yet launched virtual machine instances accelerated by pro-

grammable network cards, it is a pioneer in accelerating compute-intensive applications

in data centers with FPGA. As early as 2010, Baidu utilized FPGA for data compres-

sion [164] . In 2014, Baidu launched the SDA framework for using FPGA for deep learn-

ing inference [165] , and subsequently used FPGA for database SQL processing [166] . In

2017, Baidu proposed the XPU, a full-stack accelerator for data centers based on FPGA,

which is used for various computing acceleration scenarios [167] .
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Chapter 3 System Architecture

This paper proposes a high-performance data center system architecture based on

programmable network cards. As shown in Figure 3.1, this paper upgrades ordinary net-

work cards to programmable network cards, offloads the high-performance data plane

required by virtualization, network and storage functions, and the operating system to

the programmable network card, in order to reduce the ”data center tax” and allow the

CPU to focus on the client’s applications.

Figure 3.1 Review: Data center architecture with virtualization.

As discussed in Chapter 1, a virtualized data center can mainly be divided into

computing, network, and storage nodes. In network and storage nodes, a design concept

of separating the control plane from the data plane is adopted. The data plane handles

relatively frequent and simple operations, while the control plane handles relatively

infrequent and complex operations. The data plane is implemented in the programmable

network card, and the control plane is implemented on the host CPU, achieving a data

plane that does not pass through the host CPU at all. This includes the virtual network

functions in Chapter 4 and the data structure processing in Chapter 5. Accelerating

virtual network functions and remote data structure access are also the most important

innovations of this paper.

In the computing node, that is, the server host where the client virtual machine is

located, the programmable network card implements the virtualization functions of the

virtual machine monitor (hypervisor) and the operating system primitives. Virtualiza-

tion is divided into ”one-to-many” and ”many-to-one” aspects. ”One-to-many” means

that the programmable network card virtualizes the hardware resources within the com-

puting node into multiple logical resources, achieving multiplexing of other computing

nodes and multiple local virtual machines. For example, ClickNP in Chapter 4 virtu-

65



Chapter 3 System Architecture

alizes the hardware network card and network link into a virtual network card for each

virtual machine; KV-Direct in Chapter 5 allows multiple clients to concurrently access

shared key-value storage while ensuring consistency. ”Many-to-one” means that the

programmable network card virtualizes physically dispersed resources within the data

center into a logical resource, achieving mapping and routing from logical resources to

physical resources. For example, ClickNP in Chapter 4 virtualizes network functions

within the data center into logically unified network functions; the KV-Direct client

in Chapter 5 virtualizes distributed key-value storage into logically unified key-value

mapping; it can also achieve disaggregation of storage and memory. In order to accel-

erate operating system primitives and control hardware complexity, operating system

primitives are divided into reliable communication protocols on the programmable net-

work card and user-space libraries and user-space management programs running on the

host CPU, such as the socket communication primitives implemented by SocksDirect

in Chapter 6.

Figure 3.2 shows the overall architecture of the system based on the programmable

network card. The overall design of the subsequent chapters of this paper will be briefly

introduced in the order of network, storage, and high-level abstraction.

Figure 3.2 Overall architecture of the data center system based on the programmable net-
work card.

3.1 Network Acceleration

3.1.1 Network Virtualization Acceleration

Starting from the traditional data center architecture in Chapter 1 (Figure 1.1), this

paper gradually eliminates or offloads the ”data center tax” to the programmable net-

work card. As shown in Figure 3.3, the first step is to replace the original ordinary net-
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work card with a programmable network card and offload the software-implemented

virtual network to the programmable network card.

Figure 3.3 Architecture after accelerating the virtual networkwith a programmable network
card.

In order for the operating system network protocol stack on the virtual machine to

use the virtual network to send and receive data packets, the programmable network card

uses SR-IOV (Single Root I/OVirtualization) technology [168] to virtualize into multiple

PCIe virtual devices (VF, Virtual Function), and assigns a PCIe virtual device to each

virtual machine. The original virtual network card driver in the virtual machine (such

as those based on virtio technology [169] ) needs to be replaced with the FPGA driver and

FPGA-based virtual network card driver implemented in this paper. ClickNP in Chapter

4 virtualizes the hardware network card and network link into the virtual network of

multiple tenants.

If we can bypass the network protocol stack of the virtual machine operating sys-

tem and directly replace the standard library (i.e., system call interface libc) used by

the application program on the virtual machine, there is no need to implement SR-IOV

hardware virtualization. Chapter 6 of SocksDirect intercepts the standard library calls

about network sockets of the application program and implements the container overlay

network (suitable for container virtual network) in user mode. For efficient communi-

cation between the user mode runtime library and the programmable network card, the

FPGA driver is installed in the virtual machine, and a part of the PCIe address space

of the programmable network card is mapped to the user mode, thereby bypassing the

virtual machine kernel and the Virtual Machine Monitor or Hypervisor.
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3.1.2 Network Function Acceleration

As shown in Figure 3.4, the second step is to divide the software-implemented

virtual network function into a data plane and a user plane on the network node, and

unload the data plane into the programmable network card. It should be noted that

the division of network nodes and computing nodes is logical. It is possible that the

virtual network function is orchestrated to the same server host as the virtual machine, at

which time the functions of the network node and the computing node are combined into

one, and the connection between the virtual network and the virtual network function

is simplified from the data center network to the connection between modules in the

programmable network card.

After the data packet from the source computing node (or the previous network

node) is received by the programmable network card of the network node, it is processed

in the data plane of the network card. In most cases, the control plane on the CPU does

not need to be involved, and the processed data packet can be sent back to the data center

network, reaching the destination computing node (or the next network node). Chapter

4 will introduce how to use high-level language modular programming to implement

network functions, and implement the collaborative processing of the FPGA data plane

and the CPU control plane.

Figure 3.4 Architecture after accelerating network functions with a programmable network
card.

3.2 Storage Acceleration

3.2.1 Storage Virtualization Acceleration

After network acceleration, the third and fourth steps are storage acceleration. As

the third step, the storage virtualization function of the computing node is first offloaded
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to the programmable network card, as shown in Figure 3.5 ①.

To support distributed storage composed of multiple storage nodes, the virtual

cloud storage service needs to map logical addresses to storage node addresses. For

example, in the distributed key-value storage in Chapter 4, the client needs to map the

key to the storage node according to consistent hashing [170] , and then route the request

to that node.

Figure 3.5 Architecture after accelerating local storage and cloud storage with a pro-
grammable network card.

3.2.2 Data Structure Processing Acceleration

The fourth step is to offload the data structure processing on the storage node to

the programmable network card. Take the key-value storage detailed in Chapter 5 as an

example. After the programmable network card on the storage node receives a request

to query (GET) or write (PUT) a certain key from the network, it needs to query the cor-

responding key-value pair from the local memory or flash memory, process the request,

and then send the result to the requester on the network. As shown in Figure 3.6, this

process is called the data plane of data structure processing, and usually does not require

the intervention of the control plane. However, since complex logic is not suitable for

running on the programmable network card, the memory allocator is divided into two

parts: the network card and the host CPU. The network card caches several fixed-size

free memory blocks. When the free memory blocks are insufficient, the control plane on

the host CPU needs to supplement the free memory blocks by splitting larger memory

blocks; when there are too many free memory blocks, the host CPU needs to perform

garbage collection and merge into larger memory blocks. Another challenge of directly

accessingmemory data structures through the network card is the lower PCIe bandwidth
①This paper does not make contributions in the area of storage virtualization, it is included in the system archi-

tecture for completeness.
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and higher latency between the network card and memory. For this, Chapter 5 designed

a series of optimization methods to save bandwidth and hide latency through concurrent

processing. Despite the concurrent processing of requests, the design of Chapter 5 can

still ensure the strong consistency of concurrent access by multiple clients, that is, the

requests are logically processed in the order they are received by the network. If the

storage node also runs a virtual machine as a computing node, in order to solve the con-

sistency problem when accessing the same storage area locally and remotely, whether

it is local or remote access, it is processed through the programmable network card.

Figure 3.6 Architecture after accelerating data structure processing with a programmable
network card.

3.3 Operating System Acceleration

The final step is to divide the high-performance functions in the operating sys-

tem into three parts, which are processed in the programmable network card, the user-

mode runtime library of the host CPU, and the user-mode daemon of the host CPU,

respectively. As shown in Figure 3.7, the operating system is replaced by a user-mode

runtime library in the figure, and the function of the transport protocol is added in the

programmable network card. The user-mode runtime library intercepts the system calls

of the application program by replacing the standard library (such as libc), so that part

of the operating system functions can be implemented in user mode, and the other part

of the functions can be offloaded to the programmable network card. The user-mode

daemon is mainly used for control plane operations, which are not shown in Figure 3.7

for simplicity.

The operating system includes subsystems such as communication and storage.

This article takes the acceleration of the communication system as an example. The
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Figure 3.7 Architecture after accelerating operating system communication primitives with
a programmable network card.

socket is the most commonly used communication primitive for application programs,

but its performance is not satisfactory due to various overheads of the operating system.

Chapter 6 designs and implements a high-performance user-mode socket system, which

is fully compatible with existing applications, and can achieve low latency and high

throughput close to the hardware limit for both intra-host process communication and

cross-host communication. The system is composed of a reliable communication proto-

col on the programmable network card and a user-mode library and user-mode daemon

running on the host CPU. For cross-host communication, the data plane is composed of

the programmable network card and the user-mode library. The programmable network

card is responsible for low-level semantics such as multiplexing and reliable transmis-

sion, and provides Remote Direct Memory Access (RDMA) primitives; the user-mode

library is responsible for encapsulating RDMA primitives into the socket semantics of

the LinuxVirtual File System, providing high-level semantics such as lock-freemessage

queues, buffer management, waiting events, and zero-copy memory page remapping.

For intra-host communication, the data plane is composed of the CPU’s hardware mem-

ory coherence protocol and the user-mode library. The user-mode library establishes

shared memory queues between processes and relies on the CPU’s memory coherence

protocol for automatic synchronization. The functions of the user-mode library are sim-

ilar to those of cross-host communication. The user-mode daemon is responsible for the

control plane, that is, initialization, process creation and exit, connection establishment

and closure, establishing queues with the RDMA network card, and establishing shared

memory queues between processes.

In the design of Chapter 6, the client application accesses the RDMA function in
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the programmable network card directly through the SocksDirect runtime library, with-

out going through the operating system kernel and the virtual machine monitor, so the

programmable network card does not need to support SR-IOV hardware virtualization.

3.4 Programmable Network Card

After introducing the data center system architecture based on the programmable

network card, this section introduces the software and hardware architecture inside the

programmable network card. As shown in Figure 3.8, the logic inside the programmable

network card is mainly composed of the programming framework in Chapter 4, the basic

service middleware in Chapter 5, and the application layer in Chapters 5 and 6. The

corresponding software on the host CPU includes the FPGA communication library

and driver in Chapter 4, the key-value operation library in Chapter 5, and the socket

communication library compatible with the Linux operating system in Chapter 6.

Figure 3.8 Programmable network card architecture with software-hardware co-design.

Figure 3.9 shows the hardware architecture of the Catapult programmable network

card [48] used in this paper. The Catapult programmable network card consists of a

Stratix V FPGA and a Mellanox ConnectX-3 commercial network card. The FPGA has

two QSFP interfaces connecting to the 40 Gbps Ethernet network, one connecting to

the data center switch, and the other connecting to the commercial network card inside

the programmable network card. Since the FPGA used in this paper does not have a

PCIe Gen3 x16 hard core, the FPGA is connected to the host through two PCIe Gen3

x8 interfaces, which share a PCIe Gen3 x16 physical slot. The commercial network

card has two 40 Gbps Ethernet interfaces, one connecting to the FPGA and the other

idle. The commercial network card is connected to the host through a PCIe Gen3 x16

interface.

The FPGA used in this paper has 172,600 logic elements (ALM), 2,014 on-chip
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Figure 3.9 The Catapult programmable network card used in this paper.

memories (BRAM) of 20 Kb size, and 1,590 digital signal processing units (DSP) that

can perform 16-bit multiplication. The FPGA board also has 4 GB of DRAM, which is

connected to the FPGA via a DDR3 channel.

Chapters 4 and 5 of this paper use the reconfigurable logic of the FPGA to imple-

ment network functions and data structure processing; Chapter 6 uses the commercial

RDMA network card to implement the hardware transport protocol part of socket prim-

itives. Data packets from the data center network are received by the programmable

network card from the network interface in the upper left corner of the FPGA. If it is a

network function or data structure processing requirement, it is directly processed in the

FPGA reconfigurable logic, and the FPGA needs to use the on-board DRAM and access

the host DRAM through the CPU interconnect (such as PCIe) during the processing. If

the data packet is for socket communication in Chapter 6, it will be decapsulated in

the FPGA’s virtual network and sent to the commercial RDMA network card through

the network interface between the FPGA and the commercial RDMA network card.

The commercial RDMA network card will DMA the content of the data packet to the

user-space socket library on the host through the CPU interconnect (such as PCIe).

The next three chapters will discuss in detail the three main innovations of this

paper, namely the acceleration of network functions based on programmable network

cards (ClickNP), storage data structures (KV-Direct), and operating system communi-

cation primitives (SocksDirect).
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Chapter 4 Acceleration of ClickNP Network
Functions

4.1 Introduction

The focus of this chapter is network virtualization and network function accelera-

tion, as depicted in Figure 4.1.

Figure 4.1 The focus of this chapter: network virtualization and network function accelera-
tion, highlighted with a bold slanted background.

This chapter, serving as the foundation of the entire text, will introduce an FPGA

high-level language programming framework and the corresponding runtime on the host

CPU, and implement hardware-accelerated network functions based on this, as illus-

trated in Figure 4.2.

Figure 4.2 The placement of this chapter within the programmable network card software
and hardware architecture.

This chapter presents ClickNP , an FPGA acceleration platform for highly flexible

and high-performance network function processing on commercial servers. ClickNP

addresses the programming challenges of FPGA in three steps. Firstly, it offers a mod-
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ular architecture, akin to the Click model introduced in Section 2.2.2 [120] , where com-

plex network functions can be composed of simple elements. ① Secondly, ClickNP el-

ements are written in high-level C language and are cross-platform. ClickNP elements

can be compiled into hardware description language and hardware modules on FPGA

by utilizing commercial High-Level Synthesis (HLS) tools [49,57-58] , or compiled into

machine instructions on CPU using standard C++ compiler. Lastly, high-performance

PCIE I/O channels provide high-throughput and low-latency communication between

elements running on CPU and FPGA. PCIE I/O channels not only enable joint process-

ing of CPU-FPGA – allowing programmers to freely divide tasks between CPU and

FPGA, but also greatly assist in debugging, as programmers can easily run problematic

elements on the host and use familiar software debugging tools.

ClickNP employs a series of optimization techniques to effectively harness the

extensive parallelism inherent in FPGA. Initially, ClickNP arranges each element into

a logic block in FPGA and links them with First-In-First-Out (FIFO) buffers. Con-

sequently, all these element blocks can operate in full parallel. For each element, this

chapter meticulously crafts processing functions to minimize dependencies between op-

erations, enabling high-level synthesis tools to generate maximum parallel logic. Fur-

thermore, delayed write andmemory scatter techniques have been developed to address

read-write dependencies and false memory dependencies, issues that existing high-level

synthesis tools cannot resolve. Finally, by carefully balancing operations at different

stages and aligning their processing speeds, the overall throughput of the pipeline can

be maximized. Through these optimizations, ClickNP achieves a packet throughput of

up to 200 million packets per second②, and exhibits ultra-low latency (for most packet

sizes, the latency is less than 2𝜇s). Compared to the most advanced software network
functions on GPU and CPU, this represents about 10 times and 2.5 times the throughput

gain [36] , while reducing latency by 10 times and 100 times respectively.

This chapter implements the ClickNP toolchain, which can be integrated with var-

ious commercial high-level synthesis tools [49,57] , including Intel FPGA OpenCL SDK

and Xilinx SDAccel. This chapter also implements approximately 200 commonly used

elements, 20% of which have the same functionality as the corresponding elements in

Click, and are re-implemented with reference to Click’s code. This chapter will uti-

lize these elements to construct five demonstration network functions: (1) High-speed

packet sending and capturing tools, (2) Firewalls that support exact matching and wild-
①This is also the origin of the system name Click Network Processor (ClickNP).
②The actual throughput of ClickNP network functions may be limited by the data rate of the Ethernet port.
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card matching, (3) IPSec gateways, (4) A four-layer load balancer capable of handling

32 million concurrent streams, (5) pFabric scheduler [171] performs strict priority flow

scheduling, with 4 billion priorities. The evaluation results demonstrate that all these

network functions can be significantly accelerated by FPGA, and can saturate the line

speed of 40Gbps at any packet size, while maintaining extremely low latency and neg-

ligible CPU overhead.

In summary, the contributions of this chapter are: (1) The design and implemen-

tation of the ClickNP language and toolchain; (2) The design and implementation of

high-performance packet processing modules that run efficiently on FPGAs; (3) The

design and evaluation of FPGA-accelerated network functions. To the best of the au-

thor’s knowledge, ClickNP is the first FPGA-accelerated packet processing platform

for general network functions, completely written in a high-level language and capable

of achieving 40 Gbps line speed.

4.2 Background

4.2.1 Performance Challenges of Software Virtual Networks and

Network Functions

Virtual networks are typically implemented with virtual switch software, such as

Open vSwitch [172] . To enhance the performance of virtual networks and meet pro-

grammability requirements, cloud service providers have redesigned software virtual

switches. By leveraging high-speed network packet processing technologies such as

DPDK [14] , and running CPU cores in polling mode, the cost of packet processing can

be significantly reduced by bypassing the OS network protocol stack. However, even

for simple network packet forwarding that does not do any processing, each CPU core

can only handle 10 M to 20 M packets per second [121-122] , which still requires 3 to 6

CPU cores for a 40 Gbps line speed of 60 M packets per second.

Traditional network functions are implemented by dedicated devices deployed at

specific locations in the data center, such as F5 load balancers [117] . These dedicated

network function devices are not only expensive, but also not flexible enough to sup-

port multi-tenancy in cloud services. To support flexible network functions, cloud ser-

vice providers also deploy software-implemented virtual network functions. For in-

stance, Ananta [7] is a software load balancer deployed in Microsoft data centers, used

to provide cloud-scale load balancing services. To support multiple network functions

on a single server, RouteBricks [8] , xOMB [173] and COMB [174] adopt the program-
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ming model of the Click modular router [120] , implementing each network function as

a C++ class, allowing each packet to be processed by various network functions in se-

quence on a CPU core, the so-called ”run-to-completion” model. These works show

that under actual network functions, the speed of packet forwarding per server based

on multi-core x86 CPUs can reach 10 Gbps, and capacity can be expanded through

multi-core and building more network node clusters. To achieve isolation between net-

work functions, NetVM [175] , ClickOS [121] , HyperSwitch [176] , mSwitch [177] and other

works put each network function in a (lightweight) virtual machine, and let the virtual

switch distribute packets to these virtual machines for processing in sequence, the so-

called ”pipeline” model. In the pipeline model, packets are repeatedly passed between

cores, which is costly. NetBricks [122] returned to the ”run-to-completion” model, but

implemented network functions in high-level languages, and ensured isolation between

network functions at the compiler and runtime framework level. NFP [178] improves

packet processing performance by using multiple parallel network function pipelines.

Although virtual switches and network functions implemented via software can

support higher performance with more CPU cores and larger network node clusters,

this will significantly increase asset and operating costs [7,9] . The profitability of In-

frastructure as a Service (IaaS) cloud service providers is the difference between the

price customers pay for virtual machines and the cost of hosting these virtual ma-

chines. Given that the asset and operating costs of each server are essentially deter-

mined at the time of deployment, the most effective way to reduce the cost of host-

ing virtual machines is to package more customer virtual machines on each comput-

ing node server and decrease the number of servers for network and storage nodes.

Currently, the price of a physical CPU core (2 hyperthreads, i.e., 2 vCPUs) is approxi-

mately 0.1𝑝𝑒𝑟ℎ𝑜𝑢𝑟, 𝑚𝑒𝑎𝑛𝑖𝑛𝑔𝑡ℎ𝑒𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑖𝑛𝑐𝑜𝑚𝑒𝑖𝑠𝑎𝑟𝑜𝑢𝑛𝑑900 per year [10] . In
data centers, servers usually serve for 3 to 5 years, so the highest price of a physical

CPU core during the server’s life cycle can reach $4500 [10] . Even considering that

some CPU cores are always unsold, and the cloud often offers discounts to large cus-

tomers, compared with dedicated hardware, even dedicating a physical CPU core to

virtual networking is quite costly.

To accelerate virtual networks and network functions, previous work has proposed

using GPUs [36] , Network Processors (NP) [37-38] and hardware network switches [9] .

GPUs were initially used primarily for graphics processing, but in recent years have ex-

panded to other applications with massive data parallelism. PacketShader [36] demon-

strates that using GPUs can achieve a packet switching speed of 40Gbps. GPUs are
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suitable for batch operations, but batch operations can lead to high latency. For in-

stance, the forwarding latency reported by PacketShader [36] is about 200𝜇𝑠, which is
two orders of magnitude higher than ClickNP . As discussed in section ??, compared

with GPUs, FPGAs can fully utilize pipeline parallelism, data parallelism and request

parallelism to achieve low-latency, high-throughput packet processing. Network pro-

cessors are specifically used for processing network traffic and have many hard-wired

network accelerators. NP-Click [179] implemented the Click programming framework

on network processors. The year after the Click modular router [120] was proposed, NP-

Click [179] implemented the Click programming framework on network processors. As

discussed in section 2.3.2, the main problem with network processors is that single-

flow throughput is limited by single-core performance. As discussed in section 2.2.2,

the main problem with hardware network switches is insufficient flexibility and lookup

table capacity [9] .

As discussed in Section ??, utilizing FPGA for network function processing poses

a series of challenges. This paper concentrates on harnessing massive parallelism and

programming toolchains. Compared to CPUs or GPUs, FPGAs typically have lower

clock frequencies and smaller memory bandwidth. For instance, the typical clock fre-

quency of an FPGA is about 200MHz, an order of magnitude slower than a CPU (2 to

3 GHz). Similarly, the bandwidth of a single block of memory or external DRAM on

an FPGA is usually 2 to 10 GBps, while the DRAM bandwidth of an Intel Xeon CPU

is about 60 GBps, and the GDDR5 or HBM bandwidth of a GPU can reach hundreds of

GBps. However, CPUs or GPUs only have a limited number of cores, which restricts

parallelism. FPGAs have a large amount of built-in parallelism. Modern FPGAs may

have millions of LEs, hundreds of K-bit registers, tens of M-bit BRAMs, and thousands

of DSPmodules. Theoretically, each of them can work in parallel. Therefore, thousands

of parallel ”cores” may be running simultaneously inside an FPGA chip. Although the

bandwidth of a single BRAM may be limited, if thousands of BRAMs are accessed in

parallel, the total memory bandwidth can reach several TBps! Therefore, to achieve

high performance, programmers must fully utilize this massive parallelism.

Traditionally, FPGAs are programmed using hardware description languages such

as Verilog and VHDL. These languages are too low-level, difficult to learn, and com-

plex to program. Therefore, the large software programmer community has been far

from FPGAs for many years [54] . To simplify FPGA programming, the industry and

academia have developed many high-level synthesis tools and systems, aiming to con-

vert programs in high-level languages (mainly C) into hardware description languages.
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However, as the next subsection will discuss, they are not suitable for network function

processing, which is the focus of this work.

4.2.2 FPGA-based Network Function Programming

The aim of this chapter is to leverage FPGAs to construct a multi-functional, high-

performance network function platform. Such a platform should meet the following

requirements.

Flexibility. The platform should be fully programmed in high-level languages.

Developers should be able to program using high-level abstractions and familiar tools,

just like programming on multi-core processors. This is a prerequisite for most software

programmers to use FPGAs.

Modularity. The network function platform should support amodular architecture

for packet processing. Previous experiences with virtualized network functions have

shown that the correct modular architecture can capture many common functions in

packet processing [120-121] , making them easy to reuse in various network functions.

High performance, low latency. Network functions in data centers should pro-

cess a large number of packets at line rates of 40 / 100 Gbps, with ultra-low latency.

Previous work has shown [180] that even a few hundred microseconds of latency added

by network functions can negatively impact the service experience.

Support for CPU/FPGA joint packet processing. FPGA is not a panacea. As

discussed in Section ??, not all tasks are suitable for FPGAs. Larger logic cannot be

accommodated in FPGAs. Therefore, fine-grained processing separation between the

CPU and FPGA should be supported. This requires high-performance communication

between the CPU and FPGA.

FPGAs have long been used to implement network routers and switches. NetF-

PGA [181] proposed an open hardware platform for implementing routers on FPGAs. In

recent years, FPGAs have also been used to accelerate network functions [182-183] . As

early as the second year after the Click modular router [120] programming framework

was proposed, Xilinx proposed Cliff [184] for implementing Click with FPGA, requir-

ing hardware developers to implement a Click element as a hardware module using

hardware description languages. Subsequently, CUSP [185] and Chimpp [182] proposed

a series of improvements, simplifying the interconnection of hardware modules and en-

hancing the capabilities of software-hardware co-processing and software simulation.

However, the above work programs FPGAs using Verilog, VHDL, and other hardware

description languages. It is well known that hardware description languages are diffi-
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cult to debug, write, and modify, posing significant challenges for software personnel

to use FPGAs.

To enhance the development efficiency of Field-Programmable Gate Arrays (FP-

GAs), manufacturers of these devices offer high-level synthesis (HLS) tools [49-50] capa-

ble of compiling restricted C code into hardware modules. However, these tools merely

supplement the hardware development toolchain, and programmers are still required to

manually insert the hardware modules generated from C language into the hardware

description language project. Manual handling is also necessary for the communica-

tion between the FPGA and the host CPU. Efficient hardware development languages

such as Bluespec [51] , Lime [52] , and Chisel [53] [54-56] have been proposed by the aca-

demic and industrial communities, but their use requires developers to possess substan-

tial hardware design knowledge. Gorilla [183] proposed a domain-specific high-level

language for packet switching on FPGAs. While high-level synthesis tools and effi-

cient hardware development languages can enhance the work efficiency of hardware

developers, they are still insufficient for software developers to utilize FPGAs.

Click2NetFPGA [186] employs high-level synthesis tools to directly compile the

C++ code of Click modular routers [120] to FPGA, thereby providing a modular archi-

tecture. However, several bottlenecks exist in the system design of Click2NetFPGA’s

performance (such as memory and packet I/O), and the code has not been optimized

to ensure fully pipelined processing, resulting in a performance that is two orders of

magnitude lower than that of this paper. Moreover, Click2NetFPGA does not support

FPGA/CPU joint processing, thus it cannot update configurations or read states during

data plane runtime.

In recent years, to enable software developers to use FPGA, manufacturers of these

devices have proposed OpenCL-based programming toolchains [57-58] , offering a GPU-

like programming model, as depicted in Figure 4.3. Software developers can offload

kernels written in OpenCL language to FPGA.

Nonetheless, this method has its limitations. Multiple parallel executing kernels

need to communicate through on-board shared memory, and the DRAM throughput

and latency on the FPGA are not ideal, making shared memory a communication bot-

tleneck. Furthermore, the communication model between FPGA and CPU resembles a

GPU-like batch processing model. The communication between the host program and

the FPGA kernel must always go through the on-board DDR memory. This results in

higher processing latency (about 1millisecond), which is not suitable for network packet

processing that requires microsecond-level latency. Thirdly, OpenCL kernel functions
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Figure 4.3 Communication method between OpenCL kernels and between kernels and net-
work, host: shared memory.

require explicit calls from software programs on the host machine. Before the kernel

terminates, the host program cannot control the kernel behavior, such as setting new

parameters, nor can it read any kernel state. However, network functions face a contin-

uous stream of data packets and should always be running. Lastly, OpenCL does not

support joint packet processing between CPU and FPGA, and packet processing on the

CPU can only be performed outside the OpenCL framework.

The following will introduce ClickNP , a novel FPGA-accelerated network func-

tion platform that meets the requirements of flexibility, modularity, high performance,

low latency, and CPU/FPGA joint processing.

Network packet processing belongs to stream processing. ST-Accel [187] pointed

out that the efficiency of stream processing through FIFO in FPGA is higher than that

of shared memory, which can achieve lower latency and higher throughput. For this

reason, within the ClickNP framework, the processing logic modules of FPGA and

the communication between the network and the host should also be through the FIFO

pipeline, as shown in Figure 4.4.

Figure 4.4 Communication method between ClickNP kernels and between kernels and net-
work, host: pipeline (FIFO).

4.2.3 Architectures for Network Processors

Network processors based on general-purpose CPUs such as ClickOS [121] offer

excellent programmability, modularity, and composability, but the packet forwarding

81



Chapter 4 Acceleration of ClickNP Network Functions

performance of a single core cannot keep up with a 10 Gbps line rate for minimum-sized

packets, even before any network function is plugged in. Because CPU instructions are

executed sequentially and have low parallelism, packet processing performance would

drop further as more network functions are added. If a CPU-based network processor

is added bump-in-the-wire, there will be tens of microseconds additional end-to-end

latency [121] , which is one magnitude higher than the switching fabric. In a network

virtualization scenario, if packet encapsulation and decapsulation are done at end hosts,

as in the case of a virtual switch, network card offloading mechanisms including Large

Send Offload (LSO) and Large Receive Offload (LRO) have to be disabled, which has

a significant impact on TCP performance [188] .

ASICs are known to be high-performance, but the network functions are fixed.

Commodity switching ASICs typically have a pipeline of network functions [189] , where

each function can be configured via registers and a match table based on TCAM or

memory. Some ASICs provide flexible OpenFlow-like match-action tables [190] , but the

packet parser is fixed (we could not support new packet header and shim layer formats),

actions are not extensible, and the order of network functions in the pipeline is not

reconfigurable.

GPUs are extensively utilized as co-processors for tasks that require intensive com-

puting, but their SIMD (Single-Instruction Multiple-Data) programming model is not

suitable for network processing, where different packet types may follow various exe-

cution flows. The high power consumption, the high latency of batch processing, and

the inability to send and receive network packets without CPU intervention also make

GPU-based network processors impractical in data centers.

Fortunately, reconfigurable hardware is an architecture that offers both pro-

grammability and high performance, as well as power efficiency for certain workloads.

The most notable example of reconfigurable hardware is FPGA (field programmable

gate arrays). FPGAs can implement any logic function and use distributed on-chip

registers and SRAM to exploit bit-level and task-level parallelism, so stream process-

ing pipelines do not ”hit the memory wall” as in Von Neumann architecture [54] . FP-

GAs have shown potential in accelerating many workloads in the cloud [48] . Moreover,

Moore’s law is still applicable in the FPGA industry, as the fabrication technology of

FPGA is currently several generations behind the CPU industry [citation required].
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4.2.4 FPGA Programming Challenge

Despite the potential of FPGA in network processing, FPGA’s programmability is

traditionally provided by hardware description languages (Hardware Description Lan-

guages) such as Verilog, which require hardware knowledge and are much more diffi-

cult to program and debug than higher-level languages like C/C++. Therefore, existing

FPGA-based network processors such as NetFPGA [181] are challenging to program for

software engineers.

Many works, for example, OpenFlow [101] , P4 [106] , and Software Defined Net-

work et [191] , provide programmability by abstracting a set of primitives in network

processing and defining a high-level programming language to compose the primitives.

This approach has proven effective, but the programmability is limited to a set of prede-

fined actions, which cannot keep up with the rapid development of data center network

functions. Our work aims to make the primitives extensible for software engineers.

Fortunately, several frameworks have been proposed to provide abstractions for

generic FPGA programming. Examples of such works include Xilinx Vivado High

Level Synthesis [192] based on C/C++, Altera SDK for OpenCL [193] based on C-like

OpenCL and IBM Lime [52] based on Java.

However, FPGA has a completely different architecture than general-purpose

CPUs. For software programmers that bear Von Neumann model in mind, the com-

pilers may generate surprisingly poor hardware logic for reasonable code in high-level

language. For example, Click2NetFPGA [186] uses LLVMand high-level synthesis tools

to compile optimized Click C++ code into hardware description language, but the re-

sulting FPGA-based router can only process 178 K pps (packets per second) for 98B

packets, and 215 Mbps for large packets, which is 30 – 50x slower than a CPU core

in ClickOS [121] . The bottleneck for small packets is the IP header checking stage [186]

because this stage is not fully pipelined; the bottleneck for large packets is the byte-

wide shared memory [186] , indicating a shared-memory design suitable for Von Neu-

mann model would yield poor performance on FPGA.

FPGA has millions of logic gates with 10x slower clock rate than CPU, thousands

of distributed fast SRAMs each with only KB capacity, and a large DRAM with 10x

lower throughput than DRAMs in CPU architecture. Consequently, exploiting both

spatial and temporal parallelism is crucial to unleashing the performance of FPGA. In

network stream processing, most operations are independent of each other and therefore

can be either parallelized (spatial) or pipelined (temporal), so that each stage of the
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pipeline can process different packets in parallel.

4.2.5 Design Goals

We highlight several design goals for our ClickNP framework to enable software

engineers to write efficient network applications.

Modularity. Modularity is one key feature that improves parallelism, since modules do

not have shared state and can run in parallel by nature. Borrowing the concepts from

Click modular router [120] , elements are basic building blocks of network functions. Ele-

ments run asynchronously and are connected via uni-directional channels. The network

processing pipeline is a data flow graph of elements and channels, starting fromEthernet

receivers and ending at Ethernet transmitters.

Line-rate throughput. To allow efficient processing of packet content, an Ethernet

packet is split into 32-byte flits before feeding into elements. In the worst case, when

69-byte packets are received back-to-back, the line rate would be 40G / 8 / (69+20) =

56.18 Mpps, which splits into 56.18M * 3 = 168.54M flits. Every clock cycle an ele-

ment reads at most one flit and outputs zero or one flit. This means any FPGA pipeline

with clock frequency lower than 168.54 MHz would not be able to achieve line rate. If

we waste a cycle between every two packets, the minimum clock frequency would be

224.72 MHz. However, on Stratix V FPGA platform [194] , non-trivial hardware logic

that accesses registers and localmemory can hardly run higher than 200MHz. Therefore

no idle cycles are allowed in elements processing packet content. First, the framework

should provide abstractions for programmers to develop fully pipelined network func-

tions. Second, as full compilation of a FPGA program may take hours, the framework

should give performance warnings in an early compilation stage if the code cannot be

fully pipelined.

Code reuse. Many network applications share a common set of elements, for example

packet parser, lookup tables and packet modifications. Code of these elements should

be reusable and elements should be composable. Software engineers should be able to

write many network applications simply by connecting elements in the library.

Debugging support. First, as hardware description language (e.g. Verilog) simulation

and debugging is both time consuming and requires extensive hardware knowledge, the

framework should be able to compile OpenCL-based ClickNP programs to native x86

code for emulation, and provide traffic generators and receivers to test functionality.

Second, as CPU is neither capable of sending or receiving packets at 60 Mpps, we
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need a FPGA-based network benchmark suite to perform stress testing on the network

processor.

Separation of control plane and data plane. On one hand, our throughput require-

ment requires most network packets to be processed through the reconfigurable hard-

ware without any CPU intervention. On the other hand, software-defined networking

and network function virtualization applications are usually complicated and have ex-

ternal dependencies. Therefore a clear interface between the control plane and the data

plane is mandatory, where data plane programs are written within ClickNP framework

and target massive parallelism, and control plane programs need only slight modifica-

tions to call our host library and perform on-the-fly reconfigurations.

Host communication. Network processors require low-latency and high-throughput

interactions with the host machine. In Software Defined Networks and Network Func-

tion Virtualization applications, FPGA needs to send unknown packets to the controller

and request a new forwarding rule to be inserted into FPGA. The round-trip time should

be as low as possible to reduce end-to-end flow establish time. In packet replay and cap-

ture applications, FPGA needs to receive or send Gigabytes of packets from or to the

host machine without using the network adapter.

We design ClickNP to meet the above design goals with Catapult FPGA [48] and

Altera OpenCL [55] . In the next section, we will describe the FPGA and OpenCL com-

ponents, and how we build a toolchain that abstracts away hardware specific details.

4.3 System Architecture

4.3.1 ClickNP Development Toolchain

Figure 4.5 depicts the architecture of ClickNP . ClickNP is built upon the Catapult

Shell architecture [48] . The Catapult shell consists of numerous reusable logic modules

that are common to all applications. The shell abstracts them into a set of well-defined

interfaces, such as PCIe, Direct Memory Access (DMA), DRAM Memory Manage-

ment Unit (MMU), and Ethernet MAC. The FPGA program written with ClickNP is

compiled into Catapult user logic (role). The user logic calls the interfaces provided

by the shell to access external resources. Since ClickNP relies on a commercial high-

level synthesis toolchain to generate FPGA hardware description language, a high-level

synthesis-specific runtime (Board Specific Package, BSP) is required to perform the

conversion between the high-level synthesis-specific interface and the shell interface.
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Figure 4.5 ClickNP Architecture.

The ClickNP host process communicates with the ClickNP user logic through

the ClickNP runtime library, which further relies on the services in the Catapult PCIe

driver to interact with the FPGA hardware. The ClickNP runtime library implements

two important functions: (1) It exposes a PCIe channel API to achieve high-speed and

low-latency communication between the ClickNP host process and the role; (2) It calls

several high-level synthesis-specific libraries to pass initial parameters to themodules in

the role and control the start/stop/reset of these modules. The ClickNP host process has

a manager thread and zero or more worker threads. The manager thread loads the FPGA

image into the hardware, starts the worker threads, initializes the ClickNP components

in the FPGA and CPU according to the configuration, and controls their behavior by

sending signals to the components at runtime. If each worker thread is assigned to a

CPU, each worker thread can handle one or more modules.

4.3.2 ClickNP Programming

1. Abstraction

ClickNP provides a modular architecture, where the basic processing module is

known as an element. As shown in Figure 4.6, ClickNP elements have the following

features:

• Local state. Each element can create a set of local variables that can only be

accessed within the element itself.

• Input and output ports. Elements can have any number of input or output ports.

• Handler functions. Elements have three handler functions: (1) initialization han-

dler, invoked once when the element starts, (2) processing handler, continuously

called to inspect the input ports and process available data, and (3) signal handler,

which receives and processes commands (signals) from the manager thread in the
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host program.

Figure 4.6 Composition of ClickNP elements.

The output port of an element can be connected to the input port of another element

through a channel, as depicted in Figure 4.7 (a). In ClickNP , a channel is essentially

a FIFO buffer, written at one end and read from the other. The data unit of read/write

operations on the channel is known as a flit, which has a fixed size of 64 bytes. The

format of a flit is shown in Figure 4.7 (b). Each flit contains a header of metadata and a

payload of 32 bytes. When moving between ClickNP elements, large amounts of data

(e.g., full-size packets) are divided into multiple flits. The first flit is marked with sop

(start of packet), and the last flit is marked with eop (end of packet). If the size of the

data block is not 32, the pad field of the last flit indicates the number of bytes filled into

the payload. The reserved fields in the flit have been optimized by the hardware de-

scription language synthesis tool. Dividing large data into flits not only reduces latency

but also allows different segments of a packet to be processed simultaneously at differ-

ent elements, increasing parallelism. Finally, to implement network functions, multiple

ClickNP elements can be interconnected to form a directed processing graph, known as

a ClickNP configuration.

(a)

(b)

Figure 4.7 (a) Two ClickNP elements connected by a pipeline. (b) The format of Flit.

Obviously, the ClickNP programming abstraction is similar to the Click software
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router [120] . However, there are three fundamental differences that make ClickNP more

suitable for FPGA implementation: (1) In Click, the edges between elements are C++

function calls, and a queue element is needed to store packets. But in ClickNP , the edges

actually represent FIFO buffers that can hold actual data. Moreover, ClickNP pipelines

can break data dependencies between elements and allow them to run in parallel. (2)

Unlike Click, where each input/output port canwrite (push) or read (pull) data, ClickNP

has unified these operations: an element can only write (push) to the output port, and

the input port can only perform read (pull) operations. (3) Click allows elements to

directly call the methods of another element (through the context of a stream-based

router), in ClickNP , coordination between elements is message-based, for example,

the requester sends a request message to the responder and gets a response through

another message. Compared with coordination through shared memory, message-based

coordination allows more parallelism and is more efficient in FPGAs, because access

to shared memory can become a bottleneck.

2. Language

ClickNP elements can be declared as an object in an object-oriented language (such

as C++). Unfortunately, many existing high-level synthesis tools only support the C

language. To take advantage of commercial high-level synthesis tools, a compiler can

be written to convert an object-oriented language (such as C++) to C, but this effort is

not easy. This paper proposes a domain-specific language (DSL) based on a subset of

the C language to support element declarations.

The translation of your LaTeX content is as follows:

Figure 4.8 displays a code snippet of the Counter element, which solely counts the

number of packets that have passed through. The element is defined by the .element

keyword, followed by the element name and input/output port declarations. The .state

keyword defines the state variables of the element, and .init, .handler, and .signal spec-

ify the initialization, data processing, and signal processing function elements. Table

4.1 enumerates the built-in functions for operating on input and output ports.

Similar to Click, ClickNP also utilizes simple scripts to specify the configuration

of network functions, as depicted in Figure 4.9. The configuration comprises two parts:

declaration and connection, adhering to a syntax akin to the Click language [120] . It is

noteworthy that in ClickNP , the keyword host can be employed to annotate elements,

which will result in the elements being compiled into CPU binary files and executed on

the CPU.

For elements that some high-level synthesis tools struggle to generate efficient
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. e lement Count ( f l i t i n −> f l i t ou t ) {
. s t a t e {

u long coun t ;
}
. i n i t {

coun t = 0 ;
}
.handler {

i f ( t e s t _ i npu t _po r t ( i n ) ) {
f l i t x ;
x = read_ input_port ( i n ) ;
i f ( x . f l i t . f d . sop )

coun t = coun t + 1 ;
s e t _ou tpu t_por t ( out , x ) ;

}
}
. s i g n a l {

C lS i g n a l p ;
p . S ig . LParam [ 0 ] = coun t ;
s e t _ s i g n a l ( p ) ;

}
}

Figure 4.8 Code of the packet counter element.

Table 4.1 Built-in operations on ClickNP pipelines.

uint get_input_port() Acquire a bitmap of all input ports with available
data.

bool test_input_port(uint id) Test the input port indicated by id.

flit read_input_port(uint id) Read the input port indicated by id.

flit peek_input_port(uint id) Retrieve the data of the input port indicated by id,
but do not remove it.

void set_output_port(uint id, flit x) Set flit as the output port. Upon the handler’s re-
turn, flit will be written to the pipeline.

ClSignal read_signal() Read the signal from the signal port.

void set_signal(ClSignal p) Set the output signal on the signal port.

return (uint bitmap) The return value of .handler specifies the bitmap
of the input ports to be read in the next iteration.

hardware logic for, ClickNP supports Verilog elements written in hardware description

language. To integrate Verilog elements into the system, developers are required towrite

an element with the same interface as a placeholder (or a high-level language element

with the same function for CPU debugging and testing), and declare it in the ClickNP

configuration file with the verilog keyword. The compilation toolchain will replace the

Verilog module generated by the high-level synthesis tool for the placeholder element

with the developer’s implementation.
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Count : : c n t @
Tee : : t e e
hos t PktLogger : : l o g g e r

from_tor −> cn t −> t e e [ 1 ] −> t o _ t o r
t e e [ 2 ] −> l o g g e r

Figure 4.9 The ClickNP configuration file for the interconnection of packet capture tool
elements. Elements annotated with the host keyword are compiled and executed on the
CPU. Elements annotated with “@” need to receive control signals from the manager thread.
“From_tor” and “to_tor” are two built-in elements, representing the input and output of the
Ethernet port on the FPGA.

4.4 Internal Parallelization in FPGA

Fully utilizing the internal parallelism of FPGA is crucial for performance.

ClickNP thoroughly exploits the parallelism within and between elements in FPGA.

4.4.1 Inter-element Parallelization

The modular architecture of ClickNP makes it natural to exploit parallelism be-

tween different elements. The ClickNP toolchain maps each element to a hardware

module in the FPGA. These hardware modules are interconnected through FIFO buffers

and can work in complete parallel. Therefore, each element in a ClickNP configuration

can be viewed as a tiny independent core with custom logic. Packets flow from one ele-

ment to another along the processing pipeline. This type of parallelism is referred to as

pipeline parallelism. Furthermore, if a single processing pipeline does not have enough

processing power, multiple such pipelines can be replicated in the FPGA, and the data

can be divided into these pipelines using load balancing elements, thereby utilizing data

parallelism. For network traffic, there is data parallelism (at the packet level or flow

level) and pipeline parallelism, which can be used to accelerate processing. ClickNP

is very flexible and can easily configure both types of parallelism, as shown in Figure

4.10.

Developers can manually specify the number of times inter-element parallelism

occurs (i.e., the number of times a certain element is repeated), or they can specify the

throughput or area target of the entire network function pipeline or a certain element, and

the ClickNP toolchain will automatically calculate the number of times each element is

parallelized. ClickNP obtains the average amount of data read from the input pipeline

per clock cycle based on the dependency analysis report output by the high-level syn-

thesis tool, and estimates the throughput of the element based on the clock frequency

after FPGA synthesis①; the area is obtained based on the synthesis results of the FPGA.
①Assuming there is no blocking inside the element, i.e., data can be read from the input pipeline in each iteration.
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(a)

(b)

Figure 4.10 (a) Inter-element parallelism. (b) Intra-element parallelism.

The ClickNP toolchain automatically balances the replication times of each element, so

that the processing throughput of each element in the pipeline is roughly balanced.

4.4.2 Intra-element Parallelization

Unlike CPUs that execute instructions in memory with limited parallelism, FPGAs

synthesize operations into hardware logic, thereby eliminating instruction loading over-

head. If data requires multiple related operations within a processing function, the high-

level synthesis tool will schedule these operations to pipeline stages in a synchronous

manner. In each clock, the result of one stage moves to the next stage, and at the same

time, new data is input to this stage, as shown in Figure 4.11 (a). In this way, the pro-

cessing function can process data in each clock cycle and achieve maximum throughput.

However, in reality, pipeline processing may become inefficient in two situations: (1)

there ismemory dependency in the operations; (2) there are unbalanced pipeline stages.

The following two sections will discuss these two issues in detail and propose solutions.

1. Reducing Memory Dependency

If two operations access the same memory location, and at least one of them is a

write operation, these two operations are said to be mutually dependent [195] . Because

each memory access has a cycle delay, and the semantic correctness of the program

largely depends on the order of operations, operations with memory dependency cannot

be processed simultaneously. As shown in Figure 4.11 (b), S1 and S2 are mutually

dependent: S2 must be delayed until S1 ends, and only after S2 is completed, S1 can

operate on new input data. Therefore, this function will need two cycles to process

a data. For some packet processing algorithms, memory dependencies can be quite

complex, but due to the modular architecture of ClickNP , most elements only perform

If the element cannot do this, developers can specify the average number of iterations required to read data each time.
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simple tasks, and the memory dependency between read and write operations is the

most common situation, as shown in Figure 4.11 (b).

One approach to eliminate this memory dependency is to store data exclusively in

registers. Given that registers are sufficiently fast to perform read, compute, and write

back operations within a single cycle, there is no read-write dependency provided the

computation process can be completed within one clock cycle. Compared to CPUs,

FPGAs possess a significantly larger number of registers, such as the Altera Stratix

V which has 697Kbit of registers, thus registers can be utilized to minimize memory

dependency asmuch as possible. When the variable is a scalar, or the variable is an array

but all accessed offsets are constants and the array size does not exceed the threshold,

the ClickNP compiler implements the variable in registers. Programmers can use the

”register” or ”local / global” keywords to explicitly instruct the compiler to place a

variable (which can also be an array) in the register, BRAM, or on-board DDRmemory.

For larger data, they must be stored in BRAM or DDR memory. Variables de-

clared within the component are stored in BRAM by default. Fortunately, a technique

called delayed write can still be used to mitigate the memory dependency caused by

read-write operations in Figure 4.11 (b)①. The core idea of delayed write is to alleviate

memory dependency by adding temporary storage. Delayed write buffers the new data

to be written in the register until the next read operation②. If the next read accesses

the same location, it will directly read the value from the buffered register. In this way,

read and write operations can be performed in parallel, because read and write opera-

tions must access different memory locations.③ Figure 4.11 (c) shows a code snippet

of delayed write. Since there is no memory dependency in the code, the component can

process one data per cycle, achieving full pipelining. By default, the ClickNP compiler

automatically applies delayed write to arrays with read-write dependencies, generating

code similar to Figure 4.11 (b). If an array with read-write dependencies has multiple

read operations, ClickNP will generate code as shown in Figure 4.11 (c) P1 for each

read operation. If the array has multiple write operations and these write operations are

in mutually exclusive branch conditions, ClickNP will generate intermediate register

variables, transforming it into a situation with only one write operation. If the array has
①The result of the write operation in Figure 4.11 (b) may be used by the read operation in the next loop iteration.

After expanding adjacent loop iterations, read-after-write and write-after-read are essentially the same dependency.
②The name delayed write comes from the transformed code pattern, the physical write operation to memory is not

delayed. The hardware logic generated by the delayed write technique is the register forwarding pattern commonly
used in pipeline processor design.
③Most BRAMs in FPGAs have two ports, one for read operations and one for write operations, i.e., one random

read and one random write can be performed each clock cycle, with a one clock cycle delay for read and write
operations.
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multiple non-mutually exclusive write operations, ClickNP currently cannot automat-

ically generate delayed write.①

(a)

1 r = read_ input_port ( i n ) ;
2 S1 : y = mem[ r . x ] +1 ;
3 S2 : mem[ r . x ] = y ;
4 s e t _ou tpu t_por t ( out , y ) ;

(b)

1 r = read_ input_port ( i n ) ;
2 P1 : i f ( r . x == bu f_add r ) {
3 y_temp = bu f _v a l ;
4 } e l s e {
5 y_temp = mem[ r . x ] ;
6 }
7 mem[ bu f_add r ] = bu f _v a l ;
8 S1 : y = y_temp + 1 ;
9 S2 : bu f_add r = r . x ;
10 bu f _v a l = y ;
11 s e t _ou tpu t_por t ( out , y ) ;

(c)

Figure 4.11 Examples of memory dependency. (a) No dependency. S𝑛 represents a stage of
the pipeline, D𝑛 is a data. (b) Memory dependency occurs when state is stored in memory and
needs to be updated. (c) Solving memory dependency using delayed write.

A subtle issue arises when using the struct data structure. Figure ??(a) illustrates

such an example, where a hash table is used to maintain the count for each stream. There

will be a memory dependency between S2 and S1, even though they are accessing dif-

ferent fields of the struct. The reason is that almost all current high-level synthesis tools

treat the struct data structure as a single data with a larger bit width – equal to the size of

the struct, and use only one arbiter to control access. This type of memory dependency

is termed pseudo-dependency. Physically, the two fields key and cnt can be located at

different memory locations. To address this issue, ClickNP employs a technique called

memory scattering, which automatically converts the struct array into several indepen-
①Theoretically, it can be implemented as follows: if there are 𝑁 write operations, 𝑁 registers can be used to save

these written values, and all 𝑁 registers are compared when reading. If read and write operations are interspersed,
and the generated memory read and write instructions are concentrated in one place, additional registers need to be
added to save the intermediate state.
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dent arrays, each used to store a field in the struct. Each array is allocated different

BRAM, so they can be accessed in parallel (Figure ??(b)). After implementingmemory

scattering, S1 is no longer dependent on S2, thus eliminating the pseudo-dependency.

In general, if all accesses to an array can be divided into several disjoint equivalence

classes, with the access address range of each class not overlapping, memory scattering

can be applied, converting the address range accessed by each equivalence class into

an independent array ①. It is worth noting that memory scattering is only applicable to

components in FPGA, and is disabled if the component runs on the host CPU.

2. Balancing Pipeline Stages

Ideally, each stage in a processing pipeline should operate at the same speed, mean-

ing it processes data in one clock cycle. However, if the processes of each stage are un-

balanced and some stages require more clock cycles than others, these stages will limit

the overall throughput of the pipeline. For instance, in Figure 4.12 (a), S1 is a loop op-

eration. Since each iteration requires one cycle (S2), the entire loop will take 𝑁 cycles

to complete, significantly reducing the pipeline throughput. Figure 4.12 (b) presents

another example, where a BRAM cache is implemented for the global table (gmem) in

DDR. Although the ”else” branch rarely hits, it creates a fat stage in the pipeline (re-

quiring hundreds of clock cycles). The high-level synthesis compiler we use reserves

the worst-case number of clock cycles for each stage, so even if the fat stage is rarely

used, it greatly affects the processing speed of the entire pipeline.

ClickNP employs two strategies to balance the stages within the pipeline. Firstly,

it unrolls loops to the maximum extent possible. Loop unrolling can break down a loop

into a series of minor operations that can be executed in parallel or in a pipeline. It’s

important to note that unrolling a loop will duplicate the operations in the loop body,

thereby increasing the area cost. Hence, it may only be suitable for loops with simple

loop bodies and a small number of iterations. In network functions, such small loops

are quite common, such as calculating checksums, shifting packet payloads, or iterat-

ing over various possible configurations. The ClickNP compiler provides an unroll

directive to unroll loops.

While many high-level synthesis tools support unrolling loops with known iter-

ation counts, many real-world applications have loops with variable iteration counts.

However, in network functions, the upper limit of the loop iteration count can often be

determined, such as the maximum length of a packet. Since the iterator of a loop is
①For example, in the case of Figure ??, S1 accesses addresses divisible by 16 remainder 0 7, S2 accesses

addresses divisible by 16 remainder 8 15.
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1 . handler {
2 r = read_ input_por t ( i n ) ;
3 u s h o r t *p = ( u s h o r t *) &r . fd . d a t a ;
4 S1 : f o r ( i = 0 ; i <N; i ++) {
5 S2 : sum += p [ i ] ;
6 }
7 s e t _ou tpu t_por t ( out , sum ) ;
8 }

(a)

1 . handler {
2 r = read_ input_por t ( i n ) ;
3 i dx = hash ( r . x ) ;
4 S1 : i f ( cache [ i dx ] . key == r . x ) {
5 o = cache [ i dx ] . v a l ;
6 S2 : } e l s e {
7 o = gmem[ r . x ] ;
8 k = cache [ i dx ] . key ;
9 gmem[ k ] = cache [ i dx ] . v a l ;
10 cache [ i dx ] . key = r . x ;
11 cache [ i dx ] . v a l = o ;
12 }
13 s e t _ou tpu t_por t ( out , o ) ;
14 }

(b)

Figure 4.12 Unbalanced pipeline stages.

often used as an array index, in this case, the upper and lower bounds of the iterator can

be determined based on the size of the array ①. There are also some loops where the

upper limit of the iterator is a constant or a simple expression composed of other loop

iterators, in which case the maximum value of the upper limit expression can be calcu-

lated. For cases where the compiler cannot automatically determine the loop iteration

count and while loops without explicit iterators, ClickNP allows programmers to spec-
ify the upper limit of the loop count through pragma. Once the upper limit of the loop
count is determined, ClickNP wraps the loop body with an if statement representing the
loop condition, replaces the continue and break statements in the loop body, and then

duplicates it.

For the computation shown in Figure 4.12 (a), memory dependencies need to be

resolved after loop unrolling, because the variable sum is written and read multiple

times. After loop unrolling, ClickNP expands scalar variables into static single assign-

ment form, so that each variable is assigned only once, which can eliminate this kind

of memory dependency. Essentially, static single assignment and delayed writing both

increase memory space to improve parallelism.
①ClickNP does not support dynamic memory allocation, so the size of all arrays can be statically determined at

compile time.
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The second technique involves separating different types of operations within a

single component if it has both fast and slow operations. For instance, in a cache com-

ponent’s implementation, as depicted in Figure 4.12 (b), the slower ”else” branch is

relocated to another component. This allows the fast path and slow path to operate

asynchronously. If the cache miss rate is extremely low, the entire component’s pro-

cessing speed is determined by the fast path. As shown in Figure 4.13, the ClickNP

compiler offers an ”async” primitive. Users can insert code blocks enclosed in async
{ } in the handler. The code inside will be compiled into a new component and con-

nected to the original component through a pipeline. The original component serializes

and sends the variables used in the asynchronous component, then waits for the asyn-

chronous component to complete. Once the asynchronous component is finished, it

sends the written variables that the original component will continue to use back to the

original component.

. handler {
r = read_ input_port ( i n ) ;
i dx = hash ( r . x ) ;
i f ( cache [ i dx ] . key == r . x ) {
o = cache [ i dx ] . v a l ;

} e l s e {
k = cache [ i dx ] . key ;
v = cache [ i dx ] . v a l ;
. async {
o = gmem[ r . x ] ;
gmem[ k ] = v ;

}
cache [ i dx ] . key = r . x ;
cache [ i dx ] . v a l = o ;

}
s e t _ou tpu t_por t ( out , o ) ;

}

Figure 4.13 Example of Async primitive.

4.5 System Implementation

4.5.1 ClickNP Toolchain and Hardware Platform

This chapter implements a ClickNP compiler as the front end of the ClickNP

toolchain (§??). For the host program, Visual C++ is utilized as the backend. Further

integration of the Altera OpenCL SDK (i.e., Intel FPGA SDK for OpenCL) [57] and

Xilinx SDAccel [49] as the backend for FPGA programs. The core part of the ClickNP

compiler contains about 20,000 lines of C++, flex, and bison code, which parse configu-

ration files and component declarations, perform the optimizations described in Section
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4.4, and generate code specific to each commercial high-level synthesis tool.

For components running on the FPGA, each component is compiled into interme-

diate C code, which is then compiled into a logic module by a high-level synthesis tool.

When using the Altera OpenCL high-level synthesis tool, each ClickNP component is

compiled into a kernel, the connections between components are compiled into Altera

extended channels (channel), which are then implemented with the Avalon ST inter-

face; the components communicate with the on-board DRAM (i.e., global memory)

using the Avalon MM interface. When using the Xilinx SDAccel high-level synthesis

tool, each component is compiled into an IP core, and the connections between compo-

nents are implemented using AXI streams, and the AXI memory-mapped interface is

used to access the on-board DRAM. Components running on the host are compiled into

CPU binary files, and the management process creates a worker thread for each host

component. Each pipeline between the host and FPGA components is mapped to a slot

of the PCIe I/O channel (§4.5.3).

The hardware platform of this paper is based on the Altera Stratix V FPGA and

Catapult shell [48] . The Catapult shell also includes an OpenCL-specific runtime (BSP).

ClickNP user logic communicates with the shell through the BSP. ClickNP user logic

runs in an independent clock domain, and the BSP converts interfaces such as PCIe

DMA andDRAM in the shell in different clock domains to the user logic’s clock domain

through asynchronous FIFO. The BSP also provides management functions such as

OpenCL kernel start and stop. At the time of writing this paper, the author has not

yet obtained the Xilinx hardware platform. Therefore, the system evaluation is mainly

based on the Altera platform using ClickNP + OpenCL, and the reports generated by

Vivado HLS (such as frequency and area costs) are used to understand the performance

of ClickNP + Vivado.

1. Intermediate C Code Suitable for High-Level Synthesis Tools

Upon powering on the host or online reconfiguration of the FPGA, each kernel

or IP core commences parallel operation. As depicted in Figure 4.14, each kernel ini-

tially executes the initialization (init) function, then enters an infinite loop, checks the

input pipeline and executes the event handling (handler) function, checks the signal and

executes the event handling function.

High-level synthesis tools convert the intermediate C code into a hardware de-

scription language. Each loop in the intermediate C code is either fully unrolled into a

pipelined logic module or implemented as a state machine, with each clock cycle exe-

cuting one iteration of the loop. Loop unrolling is only applicable when the number of
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vo id k e r n e l ( ) {
Ca l l i n i t f u n c t i o n ;
Dec l a r e and i n i t i a l i z e i n p u t and o u t p u t b u f f e r s ;
wh i l e ( t r u e ) {

i f ( i n p u t b u f f e r i s f r e e and i n p u t p i p e l i n e i s no t empty ) {
Move d a t a from i n p u t p i p e l i n e t o i n p u t b u f f e r ;

}
Ca l l h a n d l e r f u n c t i o n ;
i f ( o u t p u t p i p e l i n e i s f r e e o r o u t p u t b u f f e r i s f u l l ) {
Move d a t a from ou t p u t b u f f e r t o o u t p u t p i p e l i n e ;

}
i f ( i n p u t e v en t p i p e l i n e i s no t empty ) {
Read i n p u t e v en t from i n p u t e v en t p i p e l i n e ;
C a l l s i g n a l f u n c t i o n ;
Wr i t e e v en t h a nd l i n g r e s p on s e t o o u t p u t e v en t p i p e l i n e ;

}
}

}

Figure 4.14 Pseudocode of Kernel Intermediate C Code.

loop iterations is statically known at compile time and the number of iterations is small.

For loops implemented as state machines, there may be data dependencies between dif-

ferent iterations of the loop, and the pipelined logic of one iteration may take several

clock cycles to complete, so there may be several clock cycles of interval between two

consecutive loop iterations. High-level synthesis tools need to calculate the minimum

interval (initiation interval, II) between two consecutive iterations based on dependency

relationships and pipeline delay information of the loop body. The smaller the II, the

higher the throughput. Therefore, we aim to minimize II as much as possible.

Currently, high-level synthesis tools are primarily designed for compute-intensive

operations. These operations often consist of multi-level nested loops, and the loop

transformation methods used by compilers are typically applicable to programs with

static control parts and perfectly nested loops during control flow compilation. How-

ever, the number of times the while loop in the program in Figure 4.14 is executed is

unknown at compile time, and due to the presence of input/output buffer movement

code, the loops in the handler and signal functions are not perfectly nested loops. Early

versions of high-level synthesis tools may not only fail to compile, take too long to com-

pile, and other errors for more complex source programs due to completeness issues,

but also analyze too many unnecessary memory dependencies, leading to a large II, or

even cause II static analysis failure, and the inner loop cannot be parallelized.

This paper aims to circumvent the nested loop optimization of existing high-level

synthesis tools. Observing that the component calculation logic in network functions is

relatively simple, and the amount of data processed per clock cycle is also very limited

98



Chapter 4 Acceleration of ClickNP Network Functions

(such as one flit), many loop execution times can be statically determined at compile

time (for example, processing each byte of a flit). Therefore, ClickNP unrolls or flattens

all loops in the handler and signal functions, so that the generated intermediate C code

only has a while loop, and there are no nested loops, as shown in Figure 4.15. The

default strategy of ClickNP is to unroll loops that can be determined at compile time

and flatten all other loops. Users can also specify the unrolling and flattening strategy

through compilation options (pragma) embedded in the source program. In this way,

high-level synthesis tools only need to analyze a single loop, reducing the possibility of

errors.

Unrolling the loop body also has a significant advantage: it facilitates compiler

optimization. Traditional compilers often find it difficult to optimize vector operations

represented by loops. After ClickNP unrolls the loop, the vector operation is decom-

posed into point-by-point operations, and high-level synthesis tools can perform a series

of optimizations such as constant propagation and dead code elimination. In addition,

after unrolling the loop, ClickNP can perform static single assignment transformation,

and can also expand the array with access addresses determined by loop variables into

several discrete registers, thereby eliminating memory dependencies.

The ClickNP can generate performance analysis reports. Within each component,

the analysis report includes the storage method of each variable, the unrolling or flatten-

ing strategy of each loop, the minimum interval (II) between two adjacent iterations, and

the dependency chain causing the II bottleneck. At the computational graph level, the

analysis report includes the delay, throughput, and clock frequency of each component.

2. Optimization of Compilation Speed

One limitation of FPGA programming is the relatively long compilation time. A

simple network packet forwarding function requires about 3 hours to compile. The

compilation time is mainly composed of several stages such as high-level synthesis, IP

core generation, hardware description language logic synthesis, FPGA layout routing,

and timing analysis. This chapter adopts several techniques to shorten the FPGA com-

pilation time. First, the OpenCL programming framework generates IP cores from the

Verilog modules generated by high-level synthesis and inserts them into the shell part,

which requires copying a large amount of IP core and shell part code. Noting that the

peripheral interface of user logic is fixed, this paper pre-generates IP cores and only

needs to replace the high-level synthesis Verilog module files into the project; for the

shell part code, file references are used instead of copying. Second, in order to shorten

the logic synthesis time, the fixed shell part is synthesized into a netlist file through
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1 whi l e ( t r u e ) {
2 Packe t pk t = r e a d _ i n p u t _ p o r t ( i n ) ;
3 ucha r checksum = 0 ;
4 #pragma u n r o l l 2
5 f o r ( i n t i = 0 ; i < pk t . n um_ f l i t s ( ) ; i ++) {
6 f l i t f = pk t . f i l t ( i ) ;
7 f o r ( i n t j = 0 ; j < FLIT_BYTES ; j ++)
8 checksum ^= f . b y t e s [ j ] ;
9 }
10 w r i t e _ o u t p u t _ p o r t ( out , checksum ) ;
11 }

(a) Original C intermediate code (schematic code).
1 ucha r checksum = 0 ;
2 Packe t pk t ;
3 i n t i = 0 ;
4 whi l e ( t r u e ) {
5 i f ( i == 0)
6 pk t = r e a d _ i n p u t _ p o r t ( i n ) ;
7 i f ( i < pk t . n um_ f l i t s ( ) ) {
8 f l i t f = pk t . f i l t ( i ) ;
9 checksum ^= f . b y t e s [ 0 ] ; checksum ^= f . b y t e s [ 1 ] ;
10 . . .
11 checksum ^= f . b y t e s [ FLIT_BYTES − 1 ] ;
12 i ++;
13 }
14 i f ( i < pk t . n um_ f l i t s ( ) ) {
15 f l i t f = pk t . f i l t ( i ) ;
16 checksum ^= f . b y t e s [ 0 ] ; checksum ^= f . b y t e s [ 1 ] ;
17 . . .
18 checksum ^= f . b y t e s [ FLIT_BYTES − 1 ] ;
19 i ++;
20 }
21 i f ( i == pk t . n um_ f l i t s ( ) ) {
22 w r i t e _ o u t p u t _ p o r t ( out , checksum ) ;
23 i = 0 ;
24 }
25 }

(b) The result after loop unrolling and flattening.
Figure 4.15 Loop unrolling and flattening. The i loop is unrolled according to the parallelism
2 and flattened; the j loop is fully unrolled: the result of the transformation is that all bytes of
2 flits are calculated per clock cycle.

logic synthesis, and the synthesis result is retained by using design partition, which can

reduce the logic synthesis time of the shell part by about 35 minutes. Third, in order to

speed up the convergence speed of the FPGA layout algorithm, after the initial compi-

lation is completed, the layout constraints of each module of the shell part are added to

basically fix its layout. Most of the modules in the shell part interact with the hard IP at

fixed positions on the chip, so it is reasonable to fix the layout near the hard IP. How-

ever, for better performance, this paper does not use design partitions to completely fix

the layout and routing of the shell part. This optimization can save about 20 minutes.

Fourth, distinguish between debug and release compilation modes. The debug mode

aims to verify the correctness of the logic, not to pursue performance. In debug mode,

the clock frequency of user logic is fixed at 50 MHz, which greatly reduces the diffi-
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culty of layout and routing; the layout and routing of the shell part are solidified using

design partitions, and the layout and routing of this part of high-frequency logic takes a

long time. The debug mode can save 25 minutes of compilation time compared to the

release mode, and more time will be saved when the user logic is more complex. Fifth,

unnecessary timing analysis models are deleted. The OpenCL framework defaults to

analyze timing constraints under four conditions, but as long as the most stringent one

is met, the other three can also be met, so we only retain the most stringent timing con-

straint model. Sixth, in order to achieve the highest possible performance, the OpenCL

framework first compiles with a higher user logic clock frequency (such as 250 MHz),

then calculates the longest delay and the highest clock frequency that can work correctly

based on the timing analysis results, and then uses this clock frequency for secondary

layout and routing and timing analysis. This can achieve the highest possible through-

put for compute-intensive workloads. However, this paper focuses on network packet

processing, and only needs to achieve network line speed processing capabilities, so it

can fix the clock frequency at 180 MHz, most user logic can reach this frequency, so

there is no need to re-layout and route.
Table 4.2 FPGA compilation acceleration technology.

Compilation stage Optimization method Compilation
time before
optimization
(min)

Compilation
time after
optimization
(min)

ClickNP compilation – 0.1 0.1
High-level synthesis – 1 1
Generate IP core Pre-generate IP core; use file reference

instead of copying
10 0

Logic synthesis Retain the synthesis result of the shell 50 15
Layout and routing Add layout constraints of the shell; in

debug mode, lower the clock frequency
of user logic, retain the layout and rout-
ing results of the shell

60 40 (15)*

Timing analysis Delete unnecessary timing analysis
models

15 5 (0)*

Secondary layout and routing Fix the clock frequency, no need to re-
layout and route

30 0

Secondary timing analysis Delete 15 0

Total – 180 60 (30)*
* The number in parentheses is the compilation time in debug mode.

Table 4.2 summarizes the above compilation acceleration techniques. Before opti-

mization, developers could only debug 3 rounds per working day, but after optimization,

they can debug about 10 rounds in debug mode, and system tests that require perfor-

mance can also be conducted about 6 rounds, greatly improving work efficiency.
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4.5.2 ClickNP Component Library

This paper implements a ClickNP component library containing nearly 200 com-

ponents. Some of them (about 20These components cover a large number of basic

operations of network functions, including packet parsing, checksum calculation, en-

capsulation/decapsulation, hash table, longest prefix matching (LPM), rate limiting, en-

cryption, and packet scheduling. Due to the modular architecture of ClickNP , the code

size of each component is moderate. The average line of code (LoC) of the components

is 80, and the most complex component PacketBuffer has 196 lines of C code①.

The table referred to as ?? showcases a selection of key elements implemented

in ClickNP . Along with the name of each element, the table also denotes the demo

network functions that employ each element (these are elaborated further in section

4.6). The optimization techniques previously discussed in section 4.4.2 are utilized to

minimize memory dependencies and balance pipeline stages. The third column of the

table provides a synopsis of the optimization techniques employed by each element.

For the elements listed at the top of Table ??, the processing logic within the ele-

ments necessitates access to every byte of the packet. The throughput for these elements

is provided in Gbps. However, the elements listed at the bottom of the table only pro-

cess packet headers (metadata), hence it is more suitable to measure their throughput in

packets per second. It is crucial to note that the throughput measured in Table ?? repre-

sents the maximum throughput that the corresponding elements can attain. When these

elements are employed in real network functions, other components, such as Ethernet

ports, may become the bottleneck.

For reference, Table ?? compares the optimized FPGA version, a simple FPGA

implementation that does not apply the techniques described in section 4.4, and a CPU

implementation. The table clearly demonstrates that, post optimization, all of these

elements can process packets very efficiently, achieving speeds that are 7 to 117 times

faster than the initial FPGA implementation and 21

Considering the power consumption of the FPGA (approximately 30W) and the

CPU (approximately 5W per core), the energy efficiency of the ClickNP elements is 4

to 120 times greater than that of the CPU. Table ?? also provides information on the

processing delay of each element. As can be observed, this delay is very low, with an

average of 0.19𝜇𝑠 and a maximum of only 0.8𝜇𝑠 (LPM _Tree).

The final two columns of the table provide a summary of the resource utilization
①The number of lines of code refers to the ClickNP component code, excluding the host control program and test

code.
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of each element, with utilization normalized to the capacity of the FPGA chip. Most

elements only use a small number of logic elements, which is to be expected given that

most packet operations are simple. The HashTCAM and RateLimiter elements have

moderate logic resource usage due to their larger arbitration logic. However, BRAM

usage largely depends on the configuration of the element. For example, the rate of

BRAM usage increases linearly with the number of entries supported in the flow table.

In summary, the FPGA chip used in this study has sufficient capacity to support

meaningful network functions that contain a small number of elements.

4.5.3 PCIE I/O Channel

As previously stated, a key characteristic of ClickNP is its support for combined

CPU / FPGA processing. This chapter accomplishes this objective by designing a high-

throughput, low-latency PCIe I / O channel. ClickNP supports flexible I/O operations.

As depicted in Figure 4.16, ClickNP offers two abstractions for communication with

the host CPU based on slots and work queues, and also provides an interface for raw

DMA operations.

Figure 4.16 Architecture of the PCIe I/O channel.

In the slot-based abstraction, the PCIe physical link is divided into 64 logical sub-

channels, or slots. Each slot has a pair of send and receive buffers for DMA operations.

Of the 64 slots, 33 are utilized by OpenCL BSP for managing ClickNP kernels and ac-

cessing on-board DDR (i.e., OpenCL control channels), and one slot is used to transmit

signals to ClickNP elements. The remaining 30 slots are used for data communication

between FPGA and CPU elements. The slot abstraction on the CPU can operate in

either interrupt or polling mode.
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Each data sent in the slot abstraction necessitates at least 4 DMA operations①, and

it needs to wait for the device on the other side to complete processing before it can send

the next data in the same slot. To amortize DMA overhead and increase the concurrency

of message sending, the work queue is an extension of the slot abstraction. Each slot

no longer has only one pair of buffers, but a pair of ring buffer queues for sending and

receiving. Each ring buffer queue has 128 slots and is accessed in a first-in, first-out

manner. When the sender finds that there is still data in the ring buffer queue that has

not been taken away, there is no need to notify the other party, saving the overhead of

the CPU sending the doorbell through PCIeMMIO and the FPGA sending the interrupt.

In addition to slots and work queues, more flexible communication methods are

required between the FPGA and CPU. Firstly, in the key-value storage in Chapter 5,

the FPGA needs to directly read and write the key-value in the host memory without

the involvement of the host CPU. This necessitates the FPGA to be capable of directly

issuing raw PCIe DMA read and write requests. Secondly, in memory disaggregation

based on programmable network cards, the FPGA directly maps remote memory to

the host memory space via PCIe MMIO. The host CPU directly accesses this memory

space, generating PCIe DMA read and write requests sent to the FPGA. The user logic

in the FPGA needs to handle these DMA passive read and write operations. Lastly,

some applications (such as traditional OpenCL applications) may prefer that the host

CPU and FPGA use the DRAM on the FPGA board as shared memory, so the DRAM

on the FPGA board is mapped to the host memory space via PCIe MMIO, and is sent

to the DRAM controller by the PCIe passive read and write logic in the shell. Since

the efficiency of the host PCIe MMIO reading and writing large blocks of data is low,

it also supports the host CPU through the control register, allowing the FPGA shell to

actively initiate DMA to move data between the board DRAM and the host memory.

Figure 4.17 displays the benchmark results of the PCIe I/O channel with varying

numbers of slots and batch sizes. As a baseline, the performance of OpenCL global

memory operations is also measured – to date, this is the only method provided by

OpenCL [196] for communication between the CPU and FPGA. In Figure 4.17, it can

be observed that the maximum throughput of a single slot is approximately 8.4 Gbps.
①The process of sending data from the host CPU to the FPGA is: the host CPU writes the downlink control

register in the FPGA (also known as the doorbell); the FPGA DMA reads data from the host memory. When the
FPGA has processed the data in the slot, it writes the downlink completion register in the host memory and sends
an interrupt to the host CPU. The process of sending data from the FPGA to the host CPU is: the FPGA reads the
internal uplink control register and judges it to be empty; the FPGA DMA writes data to the host memory and sends
an interrupt to the host CPU. The process of the host receiving data sent by the FPGA is: read the uplink control
register in the FPGA and judge it to be non-empty; read the data in the host memory; write the uplink control register
in the FPGA, indicating that the processing is complete.
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Through 4 slots, the total throughput of the PCIe I/O channel can reach 25.6 Gbps ①.

However, the throughput of OpenCL is surprisingly low, even less than 1 Gbps. This

is because the global memory API is designed to transfer GB-level large amounts of

data. This may be suitable for applications with large data sets, but it is not suitable for

network functions that require strong stream processing capabilities. Similarly, Figure

4.17 (b) shows the communication latency. Since OpenCL is not optimized for stream

processing, the OpenCL latency is as high as 1 ms, which is generally unacceptable for

network functions. In contrast, the PCIe I/O channel has a very low latency of 1 𝜇s
in polling mode (a CPU core continuously polls the status register), and the latency in

interrupt mode is 9 𝜇s (almost no CPU overhead).
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Figure 4.17 Performance of PCIe I/O channels. The Y-axis is a logarithmic coordinate sys-
tem.

In order to send signals to FPGA components, the ClickNP compiler automatically

generates a special component called CmdHub in the FPGA. CmdHub distributes the

control signals issued by the host management program to FPGA components through

pipelines, and the FPGA components return the results of the signal processing functions

to CmdHub through pipelines, which in turn return to the host management program.

To avoid the complexity of layout and wiring brought about by one-to-many pipeline

connections, CmdHub forms a daisy chain with all components, starting from CmdHub,

passing through all components in the topological order of the component connection

diagram, and finally returning to CmdHub. In order to identify the target component

in the daisy chain, the component ID is embedded in the signal message, and each

component only processes the signal message matching the component ID, and directly

forwards other signal messages.
①This is the actual maximum performance of the PCIe Gen2 x8 hard core used at the time of writing this chapter.

In fact, this FPGA supports the PCIe Gen3 x8 hard core. Chapter 5 achieves 2 times the PCIe I/O channel throughput
by replacing the hard core and optimizing the shell.
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4.5.4 Debugging

ClickNP provides two methods for debugging.

CPU function simulation. ClickNP components are written in class C high-level

language, so a component can be compiled into a thread running on the CPU, and the

pipeline is the queue between threads. Developers can use familiar software debugging

tools for function simulation.

Actual FPGA operation. CPU function simulation has limitations. Firstly, there

is a possibility of deadlock in the communication pipeline between components. During

CPU function simulation, due to the inconsistency of timing and hardware logic, dead-

lock problemsmay not be discovered; secondly, CPU simulation speed is slow, it cannot

reflect actual performance, and it is difficult to test the interaction with PCIe DMA and

the network; finally, function simulation cannot discover errors in the compiler. There-

fore, in actual applications, after the function simulation passes, it is generally debugged

by the method of actual FPGA operation.

Since the variable names in the ClickNP language do not correspond with those

in Verilog, online FPGA debugging tools such as SignalTap are not applicable. There-

fore, ClickNP requires a customized debugging mechanism. Firstly, in debug mode,

ClickNP can record the input and output logs of each pipeline, and transmit them to

the host memory via the PCIe I/O pipeline. Secondly, ClickNP allows users to insert

printf statements in the component code, and send debug information containing vari-

able values to the host through the pipeline. Thirdly, ClickNP supports users to insert

breakpoints at compile time for debugging interactive network protocols or simulating

queue blocking leading to deadlock. Breakpoints are compiled into pipeline write oper-

ations (notifying the host that the breakpoint has been hit) and blocking read operations

(waiting for the host to send the breakpoint continue command). Fourthly, ClickNP

allows querying or modifying the value of a variable at any time during operation (in-

cluding when a breakpoint is hit). When a user queries the value of a variable, a query or

modification command is sent through signal, and the value of the variable is returned.

4.5.5 Component Hot Migration and High Availability

Hot migration is a crucial feature that data center network functions need to sup-

port. When a virtual machine is hot migrated, the internal state of the corresponding

network card on the compute node needs to be hot migrated to the new node, other-

wise, it is necessary to reinitialize the network card state on the new node, which brings

complexity to the software and migration delay. Similarly, when network and storage
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nodes are hot migrated due to upgrades, expansions, etc., the network card state also

needs to be hot migrated to the new node. In addition, in order to achieve uninterrupted

network function upgrades, the internal state needs to be hot migrated to another node,

and then the original node is taken offline for upgrades. To achieve high availability,

when adding a backup node, in order to synchronize the internal state of the source node

and the newly added backup node, hot migration technology is also needed.

The hot migration process commences with the configuration of the switch to stop

sending packets to the old FPGA, instead buffering these packets within the switch.

The next step involves halting each component within the FPGA through the breakpoint

mechanism, as discussed in section 4.5.4. Following this, all variable values within the

components, data in the pipeline, and values in the global memory are exported to the

host. The same ClickNP program is then run on the new FPGA, importing the afore-

mentioned internal state of the FPGA through the debugging mechanism, and resuming

the operation of each component. Finally, the switch is instructed to modify the routing

table, redirecting the address of the old FPGA to the port where the new FPGA is lo-

cated, and sending the buffered packets in the switch. This concludes the hot migration

process.

To ensure high availability of network functions, ClickNP employs the method of

state machine replication. Two FPGAs receive the same sequence of packets. Provided

there is no randomization or time-related processing logic within the component, and

it does not accept control signals from the host, it can be ensured that the internal state

of the two FPGAs and the sequence of packets sent out are identical. In the event of a

backup node failure, a new backup node is simply initiated, followed by state hot migra-

tion. In the event of a primary node failure, a switch to the backup node is necessary.

At this point, a small number of input packets may be lost or output packets may be

repeated, but these situations can be safely handled by TCP.

4.6 Applications and Performance Evaluation

To assess the adaptability of ClickNP , several standard network functions were

developed based on ClickNP , which can operate in the testbed of this study. Table

4.3 encapsulates the number of elements and total lines of code included in each net-

work function, encompassing all element specifications and configuration files. It has

been confirmed that the modular architecture of ClickNP significantly enhances code

reusability and simplifies the development of new network functions. As depicted in
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Table ??, there are numerous opportunities to reuse an element in many applications, for

instance, all network functions in this study utilize L4_Parser. Each network function

may take approximately 1 hour for a programmer to develop and debug. The capability

to process in conjunction with CPU / FPGA will also significantly aid debugging, as

problematic elements can be transferred to the CPU for easy log printing to trace issues.

This chapter evaluates ClickNP in a testbed of 16 Dell R720 servers. For

each FPGA board, two Ethernet ports are connected to the Top-of-Rack Dell S6000

switch [197] . All ClickNP network functions operate on Windows Server 2012 R2. This

chapter contrasts ClickNP with other cutting-edge software network functions. For

those network functions operating on Linux, CentOS 7.2 with kernel version 3.10 is uti-

lized. The test employs the PktGen packet sending tool to generate test traffic at varying

rates with different packet sizes (64B packets, maximum throughput is 56.4 Mpps). To

measure the processing delay of network functions, a generation timestamp is embed-

ded in each test packet. When the packets traverse the network function, they are looped

back to the PktCap packet capture tool, which is located in the same FPGA as PktGen.

Then the delay can be determined by subtracting the generation timestamp from the

packet reception time. The delay caused by PktGen and PktCap is pre-calibrated by

direct loopback (without network function) and removed from the data.

The following sections introduce the network functions based on ClickNP in se-

quence.

4.6.1 Packet Generator and Packet Capture Tools

The Packet Generator (PktGen) can generate various traffic patterns based on dif-

ferent configuration files. It can produce streams of different sizes and schedule them to

start at different times according to a given distribution. The generated streams can be

further controlled in terms of flow rate and burstiness through different traffic shapers.

The Packet Capture Tool (PktCap) redirects all received packets to logger com-

ponents, which are typically located in the host. Figure ?? illustrates the component

structure of the packet capture tool. Since a single packet capture component cannot

fully utilize the capacity of the PCIe I/O channel, PktCap implements a Receive Side

Scaling (RSS) component in the FPGA to distribute packets to multiple packet cap-

ture components based on the hash value of the flow 5-tuple. Due to the throughput of

the PCIe channel being less than the throughput of the 40G network card, an extractor

component is added, which only extracts important fields of the packet (for example, if

there are 5 tuples, DSCP and VLAN tags), and forwards these fields (a total of 16B) and
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the timestamp (4B) via PCIe. PktCap is an example of demonstrating the importance

of joint CPU / FPGA processing. Compared with FPGA, the CPU has more memory

for buffering and can easily access other storage, such as the HDD / SSD drives in the

literature [198] , so it is more logical to run the logger on the CPU.
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Figure 4.18 HashTCAM.

This experiment compares theOpenFlow firewall with the Linux firewall andClick

+ DPDK [199] . For Linux, IPSet is used to handle exact match rules, while IPTable is

used for wildcard rules. Also included as a reference is the performance of the Dell

S6000 switch, which has limited firewall functionality and supports 1.7Kwildcard rules.

It is worth noting that the original Click + DPDK [199] does not support Receive Side

Scaling (RSS). This chapter fixes this problem and finds that when using 4 cores, Click

+ DPDK has already achieved optimal performance. But for Linux, using as many cores

as possible (up to 8 cores due to RSS limitations) can achieve optimal performance.

Figure 4.19 (a) shows the packet processing rate of different firewalls with different

numbers of wildcard rules. The packet size is 64B. It can be seen that both ClickNP and

S6000 can reach a maximum speed of 56.4 Mpps. Click + DPDK can reach about

18 Mpps. Since Click uses a static classification tree to implement wildcard matching,

the processing speed does not change with the number of inserted rules. Linux IPTables

has a low processing speed of 2.67 Mpps and the speed decreases as the number of rules

increases. This is because IPTables performs linear matching for wildcard rules.

Figure 4.19 (b) shows the processing latency under different loads using small

packets (64B) and 8K rules. Since each firewall has significantly different capacities,

the load factor is normalized to the maximum processing speed of each system. At

all load levels, FPGA (ClickNP ) and ASIC (S6000) solutions have 𝜇s level latency
(ClickNP is 1.23 𝜇s, S6000 is 0.62 𝜇s), with very small variance ( ClickNP is 1.26 𝜇s,
for S6000 95

Finally, Figure 4.19 (d) illustrates the latency of rule insertion when there are 8K

rules. Click’s static classification tree requires prior knowledge of all the rules, and gen-

erating a tree with 8K rules takes one minute. IPTables rule insertion takes 12 ms, which

is proportional to the number of existing rules in the table. Rule insertion in Dell S6000

109



Chapter 4 Acceleration of ClickNP Network Functions

takes 83.7 𝜇s. For ClickNP , inserting a rule in the HashTCAM table takes 6.3 to 9.5𝜇s
for 2 to 3 PCIe round trips, while the SRAM TCAM table takes an average of 44.9 𝜇s to
update 13 lookup tables. The data plane throughput of ClickNP does not decrease dur-

ing rule insertion. The conclusion is that the ClickNP firewall has similar performance

to ASIC in packet processing, but has better flexibility and reconfigurability compared

to ASIC.
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Figure 4.19 Firewall. The error bar represents the latency of the 5% and 95% percentiles.
In figures (a) and (b), the packet size is 64 bytes.

4.6.2 IPSec Gateway

One issue with software network functions is that the CPU quickly becomes a

bottleneck when packets require some computationally intensive processing, such as

IPSec [36] . The IPSec data plane needs to use AES-256-CTR encryption and SHA-

1 authentication to process IPSec packets. As shown in §4.5.2, a single AES_CTR

component can only achieve a throughput of 27.8 Gbps. Therefore, two AES_CTR

components need to run in parallel to achieve line speed. However, SHA-1 is tricky.

SHA-1 divides the packet into smaller data blocks (64B). Although the computation

within a data block can be pipelined, there is a dependency between consecutive blocks
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within an IP packet - the computation of the next block cannot start before the previous

block is completed! If these data blocks are processed in sequence, the throughput

will be as low as 1.07 Gbps. Fortunately, the parallelism between different packets

can be utilized. Although the processing of data blocks in the current packet is still in

progress, data blocks from different packets are provided. Since these two data blocks

have no dependencies, they can be processed in parallel. To achieve this, we designed a

new component called reservo (short for reservation station), which can buffer up to 64

packets and schedule independent blocks for the SHA-1 component. After calculating

the signature of a packet, the reservo component sends it to the next component that

attaches the SHA-1 HMAC to the packet.

There is another intricate issue. Although the SHA-1 component has a fixed delay,

the total delay of the packets varies, that is, it is proportional to the size of the packet.

When scheduling multiple packets in the SHA-1 calculation, these packets may be re-

arranged, for instance, smaller packets behind a large packet may be completed earlier.

To ensure the output packets maintain the same order as the input, a reorder buffer com-

ponent is further added after the SHA-1 component, which stores out-of-order packets

and restores the original order according to the sequence number of the packets. Figure

4.20 illustrates the component structure of the IPSec gateway.

AES_Dispatch

AES_CTR

AES_CTR

AES_Merge Tee

Reservation StationAppendHMAC SHA-1

flit
flit

hash

block

hash

Figure 4.20 Component architecture of the IPSec gateway.

The following compares the IPSec gateway and StrongSwan [200] , using the same

cipher suite AES-256-CTR and SHA1. In the case of a single IPSec tunnel, Figure

4.21(a) displays the throughput of different packet sizes. For all scales, IPSecGW

achieves line rate, that is, 64B packets are 28.8 Gbps, and 1500B packets are 37.8 Gbps.

However, StrongSwan can only reach up to 628 Mbps, and as the packet size decreases,

the throughput will also decrease. This is because the smaller the size, the more packets

need to be processed, so the system needs to calculate more SHA1 signatures. Figure

4.21(b) shows the latency under different load factors. Similarly, the constant delay

produced by IPSecGW is 13 𝜇s, but StrongSwan will produce a larger delay and higher
variance, up to 5 ms!
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Figure 4.21 IPSec gateway.

4.6.3 L4 Load Balancer

The L4 load balancer is implemented according to the multiplexer (MUX) in

Ananta [7] . TheMUX server essentially examines the packet header and checks whether

a direct address (DIP) has been allocated for this stream. If so, the packet is forwarded

to the server indicated by the DIP through the NVGRE tunnel. Otherwise, the MUX

server will call the local controller to allocate a DIP for the stream. The MUX server

needs to maintain the state by stream. Since there are failures and the backend server

list needs to be updated in real time to avoid black holes, hash-based ECMP cannot

be used. In addition, advanced LB may also require load-aware balancing. The flow

table is used to record the mapping of the flow to its DIP. To handle the large traffic

in the data center, it requires the L4LB to support up to 32 million streams in the flow

table. Clearly, such a large flow table cannot fit into the FPGA’s BRAM and must be

stored in the onboard DDR memory. However, accessing DDR memory is slow. To

improve performance, a 4-way associative flow cache with 16K cache lines is created

in the BRAM. The least recently used (LRU) algorithm is used to replace entries in the

flow cache.

As depicted in Figure 4.22, the incoming packet initially traverses a parser compo-

nent, which extracts the 5-tuple and transmits them to the flow cache component. If the

flow is not located in the flow cache, the packet’s metadata is forwarded to the global

flow table, which reads the complete table in the DDR. If there is still no matching

entry, then this packet is the first packet of the flow, and the request is dispatched to

the DIPAlloc component to allocate a DIP for this flow according to the load balancing

policy. After the DIP is determined, an entry is inserted into the flow table.

Upon determining the DIP of the packet, the encapsulation component will retrieve
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the next hop information, such as the IP address and VNET ID, and generate the packet

of the NVGRE encapsulation accordingly. For the remaining packets of the flow, the

DIP is extracted from the flow state. If a FIN packet is received or a timeout occurs,

the flow entry will be invalidated before receiving any new packets from the flow. Af-

ter determining the DIP, the next hop metadata is retrieved from the BRAM and the

NVGRE header is encapsulated to guide the packet to the allocated DIP.

Except for theDIPAlloc component, all components are placed in the FPGA. Since

only the first packet of the flow may encounter DIPAlloc and the allocation policy may

also be complex, it is more suitable to run the DIPAlloc on the CPU, which is another

example of joint CPU-FPGA processing.

DIPAlloc

CPU element

Figure 4.22 Component architecture of the L4 load balancer.

The following compares L4LB with Linux Virtual Server (LVS) [201] . To stress

test the system, a large number of concurrent UDP streams are generated using 64B

packets, targeting a Virtual IP (VIP). Figure 4.23 (a) shows the processing rate with

different numbers of concurrent streams. When the concurrent traffic is less than 8K,

L4LB reaches a line rate of 51.2Mpps. However, as the number of concurrent streams

increases, the processing rate begins to decline. This is due to cache misses in the flow

cache of L4LB. When a flow is missing from the flow cache, L4LB must access the

onboard DDR memory, which leads to a performance drop. When the traffic is too

high, for example, 32M, cache misses dominate and for most packets, L4LB needs to

access DDR memory once. Therefore the processing speed drops to 11Mpps. In any

case, the processing rate of LVS is very low. Since LVS associates the VIP with only

one CPU core, its processing rate must reach 200Kpps.

The translation of your LaTeX content into English while preserving the original

LaTeX markup structure is as follows:

Figure 4.23 (b) illustrates the latency under varying load conditions. In this experi-

ment, the number of concurrent streams is held constant at one million. It is evident that

L4LB achieves an impressively low latency of 4 𝜇s. However, LVS incurs a delay of
approximately 50 𝜇s. When the throughput load exceeds 100Kpps, the queuing delay
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Figure 4.23 Performance evaluation of L4 load balancer.

escalates rapidly, surpassing the processing capacity of LVS.

Lastly, Figure 4.23 (c) contrasts the capacity of L4LB and LVS to accept new flows.

This experiment directs PktGen to generate as many single-packet micro-flows as pos-

sible. It is observable that L4LB can accommodate up to 10M new connections per sec-

ond. Given that a single PCIe slot can transmit 16.5M data per second, the bottleneck

remains DDR access. For simplicity, the DIPAlloc component in this paper allocates

DIP in a round-robin fashion. For complex allocation algorithms, the CPU core of DI-

PAlloc will become the bottleneck, and performance can be enhanced by replicating the

DIPAlloc component on more CPU cores. For LVS, due to its limited packet processing

capacity, it can accept a maximum of 75K new connections per second.

4.6.4 pFabric Flow Scheduler

ClickNP is also a valuable tool for network research. Owing to its flexibility and

high performance, ClickNP can swiftly create prototypes of the latest research and apply

them to real environments.

This section employs ClickNP to implement a recently proposed packet scheduling
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rule–pFabric [171] . pFabric scheduling is straightforward. It maintains a shallow buffer

(32 packets) and always dequeues the packet with the highest priority. When the buffer

is full, the packet with the lowest priority will be discarded. pFabric has achieved near-

optimal flow completion time in data centers. In the original paper, the authors proposed

using a Binary Comparison Tree (BCT) to select the packet with the highest priority.

However, although BCT only requires 𝑂(𝑙𝑜𝑔2𝑁) cycles to calculate the packet with the
highest priority, there is a dependency between two consecutive selection processes.

This is because only after the previous selection is completed can the packet with the

highest priority be known, and then the next selection process can be reliably started.

This restriction requires a clock frequency of at least 300MHz to achieve a line speed

of 40Gbps, which is currently unattainable for the existing FPGA platform.

entry entry entry entry

Enque enable and data

Deque 
data

Overflow 
data

Enque enable and data

Figure 4.24 Shift register priority queue.

This paper employs a distinct method to implement the pFabric scheduler, which

is more amenable to parallelization. The approach is grounded on the shift register

priority queue [202] . As depicted in Figure 4.24, entries are stored in𝐾 registers in a non-

increasing priority order. During dequeuing, all entries shift to the right and are popped

from the head. This process only necessitates 1 cycle. For the enqueue operation, the

metadata of the new packet will be forwarded to all entries. At this point, for each entry,

a local comparison can be conducted between the packet in the entry, the new packet,

and the packet in the adjacent entry. Given that all local comparisons can be executed

in parallel, the enqueue operation can also be accomplished in 1 cycle. Enqueue and

dequeue operations can be further parallelized. Hence, a packet can be processed in

a single cycle. Figure 4.25 illustrates the component architecture of the pFabric flow

scheduler.

Parser PacketBuffer

PriorityQueue ReorderQueue

RateLimit

Figure 4.25 Component architecture of pFabric flow scheduler.

In this experiment, a software TCP flow generator [203] was modified to embed the

flow priority, that is, the total size of the flow, into the packet payload. The experiment
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generated flows in accordance with the data mining workload in [171] and utilized the

RateLimit element to further set the exit port limit to 10 Gbps. The pFabric application

schedules the traffic in the exit buffer based on the flow priority. Figure 4.26 presents

the average flow completion time (FCT) and ideal value of pFabric and TCP with a

Droptail queue. This experiment validates that pFabric achieves near-optimal FCT in

this straightforward scenario.
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Figure 4.26 Verification of pFabric.

4.6.5 Fault-tolerant EPC SPGW

The data plane of the LTE core network (EPC) employs S-GW and P-GW to pro-

cess network packets, with its processing flow resembling that of the IPSec gateway,

as depicted in Figure 4.27. The EPC SPGW must maintain the state for each bearer

(i.e., user), with the bearer’s state being modified each time a packet passes through.

The EPC SPGW demands not only high throughput and low latency, but also high fault

tolerance, meaning that hardware failures should be imperceptible to users and the state

should not be lost.

EPC Architecture

controller

Catapult FPGA

Software

Hardware

StateCmd

Control signal
(add/remove bearers)

Dump connection states
for fault tolerance

Encapsulated
user trafficDecapsulated

user traffic

PCIe

Figure 4.27 Acceleration architecture of LTE core network (EPC).

High fault tolerance is achieved using the state machine replication method out-

lined in Section 4.5.5, as illustrated in the component structure in Figure 4.28. Each user

requires approximately 300 bytes of state, the FPGA’s on-chip memory can cache the

state of around 4K users, and the on-board BRAM can store the state of 10M users, thus
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a single FPGA can support up to 10M concurrent connections. In the typical scenario

where user access follows a power law distribution, the FPGA’s throughput can reach

40 M packets per second (pps); in the worst-case scenario, due to cache misses, the

throughput can reach 20 M pps. Under normal circumstances, the FPGA’s 95% latency

is 4 𝜇s. The control plane is implemented through the PCIe I/O pipeline, with a 95%

control plane latency of 1 𝜇s and a throughput of 1M add or delete user operations per

second. When adding a new backup node, it is necessary to back up the user state of the

original node to the new node. When the network is idle, this state migration process

can fully utilize the 40 Gbps bandwidth, and state replication can be achieved in just 0.8

seconds.

BRAM cache

DRAM

Control 
command

CPU

Dump 
state

Replication

User traffic

Add/remove
bearer

User traffic hit

miss

Figure 4.28 Component structure of LTE SPGW.

4.7 Discussion: Resource Utilization

This section will evaluate the resource utilization of the ClickNP network function.

The results are summarized in Table 4.3. Except for the IPSec gateway that utilizes most

of the BRAM to store the code book, all other network functions only use a moderate

amount of resources (5 to 50
Table 4.3 Summary of ClickNP network functions.

Network Function LoC† #Elements LE BRAM

Pkt generator 665 6 16% 12%
Pkt capture 250 11 8% 5%
OpenFlow firewall 538 7 32% 54%
IPSec gateway 695 10 35% 74%
L4 load balancer 860 13 36% 38%
pFabric scheduler 584 7 11% 15%
† The sum of the number of lines of code for all component description languages and configuration files.

Next, we examine the overhead of ClickNP ’s fine-grained modularization. Since

each component will generate logic block boundaries and only use FIFO buffers to com-
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municate with other blocks, there should be overhead. To measure this overhead, create

a simple ”empty” component that only passes data from one input port to the output

port. The resource utilization of this empty component can well reflect the overhead

of modularization. Different high-level synthesis tools may use different amounts of

resources, but they are all very low, with a minimum of 0.15

Finally, we examine the efficiency of the hardware description language code gen-

erated by ClickNP in comparison to manually written hardware description language.

For this, we use NetFPGA [138] as a reference. Initially, we extract the key modules

in NetFPGA, which have been optimized by experienced Verilog programmers, and

implement corresponding components with the same functionality in ClickNP . Sub-

sequently, using different high-level synthesis tools as the backend, we compare the

relative area cost between these two implementations. The results are summarized in

Table 4.4. As different tools may have varying area costs, we record the maximum and

minimum values. It is evident that the automatically generated hardware description

language code uses more area compared to manually optimized code. However, the

difference is not substantial. For complex modules (as shown at the top of the table),

the relative area cost is less than twice. For smaller modules (as shown at the bottom of

the table), the relative area cost appears larger, but the absolute resource usage is mini-

mal. This is because existing high-level synthesis tools generate fixed control logic for

each component, resulting in area overhead.
Table 4.4 Area overhead compared to NetFPGA.

NetFPGA
Function

Logic Lookup Table (LUT) Register Memory (BRAM)
Min / Max Min / Max Min / Max

Input selector 2.1x / 3.4x 1.8x / 2.8x 0.9x / 1.3x
Output queue 1.4x / 2.0x 2.0x / 3.2x 0.9x / 1.2x
Packet header parser 0.9x / 3.2x 2.1x / 3.2x N/A
Openflow lookup table 0.9x / 1.6x 1.6x / 2.3x 1.1x / 1.2x

IP checksum calculation 4.3x / 12.1x 9.7x / 32.5x N/A
Tunnel encapsulation 0.9x / 5.2x 1.1x / 10.3x N/A

In conclusion, ClickNP can generate efficient hardware description language for

FPGA with only a moderate area cost, and can construct practical network functions.

Looking ahead, FPGA technology is still rapidly evolving. For instance, the area of

Intel’s Arria 10 FPGA and the latest Stratix 10 FPGA are 2.5 times and 10 times that

of the chip used in this study (Stratix V), respectively. Therefore, the area cost of high-

level synthesis will become less significant in the future.
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4.8 Extension: Computation-Intensive Applications

Some network functions are computation-intensive, such as the IPSec gateway in

Section 4.6.2 which needs to encrypt and sign the content of each data packet. Due

to the large amount of computation for a data packet, the area of fully unfolding the

entire computation flow graph into a pipeline will exceed the capacity of the FPGA.

Therefore, it is necessary to exchange time for space, and split the computation flow

graph. Due to the dependencies in the computation process, Section 4.6.2 shows how

to use reservation stations to divide the computation of data packets intomultiple stages,

save intermediate states, and fully utilize the parallelism between different connections.

This section discusses two applications with larger computations: HTTPS RSA acceler-

ation and neural network inference, to demonstrate the general method of implementing

computation-intensive applications.

4.8.1 HTTPS RSA Acceleration

HTTPS is a protocol for secure connections with web services. With increasing

user concern for privacy, more and more web services provide access through HTTPS.

Since 2010, the proportion of HTTPS traffic has grown by 40

HTTPS provides three mechanisms to ensure security. First, when a connection is

established, it uses to verify the identity of the web server and create a shared key for

both parties. Second, it encrypts the data transmission between the user and the web

server. Third, it checks the integrity of the data. Among these three mechanisms, con-

nection establishment is the most computation-intensive part because it requires asym-

metric key operations (such as the RSA algorithm).

Without enabling HTTPS, a single CPU core can process over 7,000 HTTP re-

quests per second. When using HTTPS, the throughput drops to 1/35 due to the TLS

handshake in the connection setup. The high computational overhead of the TLS hand-

shake has always been a major obstacle for high-traffic websites to deploy HTTPS to

ensure security.

In the TLS handshake, the web server carries out decryption using the RSA private

key. As depicted in Figure 4.29, RSA decryption ismathematically a large integer power

modulus operation, where the base, exponent, and modulus are all large integers. By

binary decomposition of the exponent, the large integer power modulus operation can be

implemented by iteratively performingmultiplemultiplicationmodulus operations. The

multiplication modulus operation can be transformed into 3 multiplication, 1 addition,

and 1 subtraction operations by the Montgomery algorithm. For a 2048-bit private key,
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decryption requires approximately 8 million 16-bit integer multiplication operations.

Although TLS certificate parsing and protocol processing are also complex, the number

of computations required is significantly less than decryption. Therefore, wemodify the

OpenSSL library to offload RSA decryption operations to the FPGA and retain the other

parts on the CPU.

Clearly, fully unfolding the entire RSA decryption process into digital logic would

occupy too much chip area, so it is necessary to trade time for space and construct

a smaller scale multiplication and addition array, repeating the computation multiple

times. For a 2048-bit key, even the innermost 1024-bit large integer multiplier has

already exceeded the FPGA’s DSP quantity limit, so it is necessary to further divide the

large integer multiplication. In the Montgomery algorithm, the 3 multiplications can

obviously reuse the same multiplier array.① The ModMulti controller in Figure 4.29

moves data between the multiplier, adder, and subtractor; the Binary Exp controller

moves data between multiple ModMulti operations. In addition, since there is pipeline

delay in the operation components, and there is dependency between the computations

of a single RSA decryption, many operation components will be idle if only one RSA

decryption is performed. In order to fully utilize the parallelism of the FPGA, multiple

RSA decryption tasks need to be processed concurrently. The ModMulti and Binary

Exp controllers need to manage the intermediate data and execution status of concurrent

tasks, and schedule unrelated subtasks to the computation components.

Binary Exponentiation 
Controller

(1024 iterations:
2 ModMulti)

Input: 
1024-bit numbers

Algorithm: Montgomery modular multiplication

ModMulti Controller
(3 multi; 1 add; 

1minus)

𝟏𝟎𝟐𝟒 × 𝟏𝟎𝟐𝟒
multiplication

Output: 
1024-bit result

1024-bit numbers

1024-bit result

𝐶17 = 1 ∙ 𝐶1 × 0 ∙ 𝐶2 × 0 ∙ 𝐶4 × 0 ∙ 𝐶8 × 1 ∙ 𝐶16
Modular Multiplication 

𝐶1, 𝐶2… , 𝐶16

Figure 4.29 Component structure of the HTTPS accelerator (simplified diagram).

Clearly, manually implementing the logic of controller cache management, task

division, concurrency control, data movement, etc. is quite laborious. For this reason,

we aim to automatically generate controller code from the source code shown in Figure

4.30.

Firstly, ClickNP begins from the innermost loop, attempting to unroll as many loop

layers as possible to parallelize the maximum number of computations. In instances of
①If three separate multiplier arrays are used, then under the condition of a fixed total area, the parallelism of

each multiplier array will become 1/3, and since there is data dependency between the 3 multiplications, the delay of
the RSA decryption operation will increase to about 3 times. Therefore, when the parallelism is adjustable, in most
cases it is beneficial to combine multiple elements that cannot be executed in parallel into one element with greater
parallelism.
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t emp l a t e <T> u i n t ##(T*2) Ka r a t s uba ( u i n t ##T a , b ) {
i f (T > 256) { / / k a r a t s u b a m u l t i p l i c a t i o n

c o n s t T ’ = T / 2 ;
u i n t ##T’ a0 = a [T−1:T ’ ] , a1 = a [T ’ − 1 : 0 ] ;
u i n t ##T’ b0 = b [T−1:T ’ ] , b1 = b [T ’ − 1 : 0 ] ;
u i n t ##T m0 = Kara t suba <T’ >( a0 , b0 ) ;
u i n t ##T m1 = Kara t suba <T’ >( a1 , b1 ) ;
u i n t ##T m2 = Kara t suba <T’ >( a0 + a1 , b0 + b1 ) ;
r e t u r n (m0 << T) + ( (m2 − m0 − m1) << T ’ ) + m1 ;

}
e l s e { / / s imp l e s c hoo l book m u l t i p l i c a t i o n

u i n t 3 2 t [T*2 / 1 6 ] ;f o r ( i =0 ; i <T ; i +=16)
f o r ( j =0 ; j <T ; j +=16)

t [ ( i + j ) / 16] += a [ i +15: i ] * b [ j +15: j ] ;
u i n t ##(T*2) r e s u l t ;
f o r ( i =0 ; i <T*2; i +=16) {

t [ i +1] += t [ i ] [ 3 1 : 1 6 ] ;
r e s u l t [ i +15: i ] = t [ i ] [ 1 5 : 0 ] ;

}
}

}
u i n t 1024 ModMulti ( u i n t 1024 a , b , m, m’ ) {

u i n t 2048 t = Kara t suba <1024 >( a , b ) ;
u i n t 1024 n = Kara t suba <1024 >( t [ 1 0 2 3 : 0 ] , m’ ) [ 1 0 2 3 : 0 ] ;
u i n t 2048 sum = Add<2048 >( t , Ka ra t suba <1024 >(m * n ) ) ;
u i n t 1024 s = sum [ 2 0 4 7 : 1 0 2 4 ] ;
i n t 1 024 d i f f = Sub t r a c t <1024 >( s , n ) ;
r e t u r n I s P o s i t i v e <1024 >( d i f f ) ? d i f f : s ;

}
u i n t 1024 ModExp ( u i n t 1024 a , e , m, m’ ) {

u i n t 1024 s qu a r e = a , r e s u l t = 1 ;
f o r ( i = 0 ; i < 1024 ; i ++) {

i f ( e [ i ] )
r e s u l t = ModMulti ( r e s u l t , squa re , m) ;

s q u a r e = ModMulti ( squa re , squa re , m) ;
}
r e t u r n r e s u l t ;

}
Figure 4.30 Schematic code of ClickNP for large integer power modulus operation used in
2048-bit RSA decryption. The ClickNP template is a syntactic sugar for generating recursive
structure code, which will be expanded and eliminate invalid code at compile time. Functions
not declared as inline are implemented as independent components, just like the async primi-
tive.

multiple parallel loops (such as themultiplication and addition in Figure 4.30), the unroll

count for each loop needs to correspond to the number of computations ①, ensuring

that the throughput of each computation module is matched. Developers can specify

the unroll count for each loop separately; for programs where the loop iteration count

is statically known at compile time, a global unroll count can also be specified as the

unroll count for the loop with the highest computational intensity, and ClickNP will

automaticallymatch the unroll count for other loops.② The upper limit of the loop unroll
①For instance, if two loops have 512 and 1024 iterations respectively, the ratio of the unroll count for the two

loops is 1:2.
②For programs with uncertain loop times, developers can manually divide them into several static areas and

specify the required throughput or area target for each area.
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count is dependent on the FPGA’s hardware capacity, and developers can configure it

based on the resource estimates reported by the high-level synthesis tool or the results

after synthesis and layout routing. Some programs have multi-layer loops whose order

can be interchanged, and the data locality of the code generated by splitting different

loop levels varies, resulting in different amounts of required data movement. When

writing ClickNP code, developers should place the loop with the highest parallelism

and strongest data locality in the innermost layer, so that when the compiler unrolls the

inner loop, it can minimize the data movement overhead.

Next, ClickNP generates controller code. To generate code for concurrent execu-

tion with hidden latency, ClickNP compiles the computation components (i.e., unrolled

loops) and the code for data movement between on-chip memory and computation com-

ponents using high-level synthesis tools, to calculate their latency and throughput. The

number of tasks executed concurrently is the product of latency and throughput. The

controller stores the current execution status and intermediate data of each task in the

on-chip memory and schedules the split sub-computation tasks to the computation com-

ponents.

A typical inference neural network comprises several sparse and dense layers.

Sparse layers primarily read randomly from larger feature arrays, while dense layers

mainly perform matrix or vector multiplication. Each sparse and dense layer is repre-

sented by a ClickNP component, and the computation flow graph of the neural network

is the connection between ClickNP components. If each component is implemented as

separate hardware logic, the on-chip resources will be fragmented. For a specific task,

only a few computation components are running at the same time, resulting in longer

latency for a single task. Therefore, it is necessary to extract common computation

components from different components. For network functions, ClickNP has difficulty

optimizing this because the types of computations performed by various components of

network functions are different and it is difficult to extract common parts.

The method to extract common computation components is to compare the iso-

morphism of loops in different components, that is, whether the abstract syntax trees of

two loops can be made completely the same by replacing the accessed array names and

loop variable names. If the loops in several different components are isomorphic, these

refactored loops can be extracted into a new async component. For example, access to
global memory in each sparse layer can be extracted into one component, matrix and

vector multiplication in each dense layer can be extracted into one component, and the

relu activation function in each dense layer can be extracted into another component.
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Next, similar to RSA decryption, ClickNP unrolls the inner loops as much as possible

and generates controller code. As shown in Figure 4.5, the higher the parallelism of

loop unrolling, the lower the latency of neural network inference.
Table 4.5 Latency of neural network inference at different parallelism levels of
dense layers. The neural network used consists of three sparse layers and four
dense layers. The features obtained by the three parallel-executing sparse layers
are concatenated with other input features and then enter the dense layers. The four
dense layers form a pipeline, each consisting of matrix and vector multiplication,
activation function, and normalization function.

Dense layer parallelism Per-sample latency (𝜇s)
8 188.2
16 98.2
32 49.3
64 26.1
128 17.5
256 Insufficient resources

Finally, it should be noted that for compute-intensive tasks, although the high-

level synthesis method adopted by ClickNP significantly improves the development

efficiency compared to manually writing low-level FPGA code, its area overhead may

be considerably higher than manually optimized FPGA code. Fortunately, the perfor-

mance of network packet processing tasks is primarily limited by network bandwidth,

and in most cases, the FPGA area is not a significant consideration.

4.9 Chapter Summary

This chapter introduced ClickNP , an FPGA acceleration platform for highly flex-

ible and high-performance network functions in commercial servers. ClickNP is fully

programmable in a high-level language and provides a modular architecture familiar to

software programmers in the network domain. ClickNP supports joint CPU / FPGA

packet processing and has high performance. Evaluation shows that compared with the

most advanced software network functions, ClickNP increases the throughput of net-

work functions by 10 times and reduces latency by 10 times. This chapter presented a

specific case, showing that FPGA can accelerate network functions in data centers. This

chapter confirmed that high-level language programming on FPGA is actually feasible

and practical.
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Chapter 5 Acceleration of KV-Direct Data Structures

5.1 Introduction

The theme of this chapter is storage virtualization and data structure processing ac-

celeration, as shown in Figure 5.1. Among them, data structure processing acceleration

is the focus of this article, and storage virtualization is only briefly discussed in Section

5.6.3.

Figure 5.1 The theme of this chapter: storage virtualization and data structure processing
acceleration, marked with a bold oblique line background.

In terms of programmable network card programming, this chapter builds on the

ClickNP programming framework proposed in the previous chapter, establishes the

foundation of the service layer, proposes a framework for stateful processing and data

structure processing, and implementsmemory key-value storage based on this, as shown

in Figure 5.2.

Figure 5.2 The position of this chapter in the programmable network card software and
hardware architecture.

In-memory key-value storage is a key component of distributed systems in data
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centers. This chapter presents KV-Direct, an in-memory key-value system based on

programmable network cards. As the name suggests, the programmable network card

of KV-Direct receives and processes key-value operation requests from the network, and

applies updates directly in the host memory, bypassing the host CPU. KV-Direct extends

RDMA primitives from memory operations (read and write) to key-value operations

(GET, PUT, DELETE, and atomic operations). Furthermore, to support vector-based

operations and reduce network traffic, KV-Direct also provides new vector primitives

UPDATE, REDUCE, and FILTER, allowing users to define active messages [204] and

delegate certain computations to the programmable network card.

The design focus of key-value processing within the programmable network card

is to optimize PCIe traffic between the network card and the host memory. KV-Direct

adopts a series of optimizations to fully utilize PCIe bandwidth and hide latency. Firstly,

KV-Direct designs a new hash table and memory allocator to take advantage of FPGA’s

parallelism and minimize the number of PCIe DMA requests. On average, KV-Direct

uses only close to one PCIe DMA operation per GET operation and two PCIe DMA op-

erations per PUT operation. Secondly, to ensure the consistency of key-value storage,

KV-Direct designs an out-of-order execution engine to track operation dependencies

while maximizing the throughput of independent requests. Thirdly, KV-Direct imple-

ments a hardware-based load dispatcher and cache components in FPGA to fully utilize

the bandwidth and capacity of onboard DRAM.

Based on the above optimization, a single network card KV-Direct system can

achieve up to 180 M key-value operations per second, equivalent to the throughput of

36 CPU cores [31] . Compared with the most advanced CPU key-value storage system,

KV-Direct can reduce tail latency to 10 𝜇s, while improving energy efficiency by 3

times. Moreover, KV-Direct can achieve near-linear scalability through multiple net-

work cards. By using 10 programmable network cards in a single commodity server,

the performance can reach 1.22 billion key-value operations per second, which is an

order of magnitude higher than existing systems.

KV-Direct also supports up to 180 Mops of general atomic operations, signifi-

cantly better than the performance reported in the most advanced RDMA-based sys-

tems: 2.24 Mops [46] . The high performance of atomic operations is mainly attributed

to the out-of-order execution engine. The out-of-order execution engine can efficiently

track dependencies between key-value operations without blocking the pipeline.

The rest of this chapter is arranged as follows. Section 5.2 introduces the back-

ground, and clarifies the design goals and challenges. Section 5.3 describes the design
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of KV-Direct. Section 5.5 evaluates the performance of KV-Direct. Sections 5.6 and

5.7 discuss the extensions of this paper. Section 5.8 discusses related work. Section 5.9

concludes.

5.2 Background

5.2.1 The Road to High Performance Key-Value Storage

Building a high performance key-value storage is a non-trivial exercise of optimiz-

ing various software and hardware components in a computer system. The rich litera-

ture on key-value storage performance optimizations can give us a glimpse of software

and hardware evolution in recent years. Early works on distributed in-memory key-

value storage such as Memcached [205] uses OS locks for multi-core synchronization

and TCP/IP networking stack for communication. Since then, optimizations have been

made on multiple fronts to remove bottlenecks in various parts of the system.

1. Synchronization cost

Synchronization is needed in multi-threaded key-value storage implementation

since multiple clients might access the same keys concurrently. For example, when

two clients make atomic increments to a single key, the value needs to reflect both in-

crements.

To reduce synchronization cost, Masstree [32] , MemC3 [33] and libcuckoo [34] opti-

mize caching, hashing andmemory allocation algorithms, and replace permissive kernel

locks with optimistic version-based locks. MICA [30-31] takes a further step to com-

pletely avoid synchronization by partitioning the hash table to each core so that each

core serves an exclusive portion of the hash table. This approach, however, may intro-

duce core imbalance for long-tail access patterns with a few extremely popular keys [31] .

2. Networking overhead

In a key-value storage where computation to communication ratio is low, a signif-

icant portion of CPU cycles is spent in the kernel networking stack, including protocol

handling, memory copy, system call and multi-core synchronization [12] . Furthermore,

the kernel network stack adds hundreds of microseconds latency [29] , which greatly im-

pacts response time. and complicates latency-hiding programming of applications that

require multiple round-trips to the key-value storage.

Extensive research has been conducted to reduce network communication costs

and improve end-to-end latency. One line of work proposes that key-value storage

server software communicates directly with network cards by polling while bypass-
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ing the kernel [13,206] ; packets are processed by a lightweight network stack in user

space [16-17] . Chronos [27] , RAMCloud [28-29] and MICA [30-31] leverage this approach

to achieve high throughput (approximately 5 million key-value operations per second

(op/s) per core) and low latency (microsecond-scale) by reducing networking overhead.

The other line of work leverages two-sided RDMA [35] as an RPC mechanism be-

tween key-value storage client and server. RDMA is a hardware-based transport that

almost completely removes the CPU overhead of networking. Key-value storage sys-

tems such as HERD [46-47] achieve per-core throughput and end-to-end latency compa-

rable or superior to the first line of work, but the overall throughput per server largely

depends on the processing capacity of RDMA network cards [47] .

3. Throughput bottleneck of CPU

When pushed to the limit, in high performance key-value storage systems the

throughput bottleneck can be attributed to the computation in key-value operation and

the latency in random memory access. Key-value storage needs to spend CPU cycles

for key comparison and hash slot computation. Moreover, key-value storage hash table

is orders of magnitude larger than the CPU cache, therefore the memory access latency

is dominated by cache miss latency for practical access patterns.

By our measurement, a 64-byte random read latency for a contemporary computer

(Sec. ??) is approximately 110 ns. A CPU core can issue several memory access in-

structions concurrently when they fall in the instruction window, limited by the number

of load-store units in a core (measured to be 3 to 4 in our CPU) [207-209] . In our CPU,

we measure a max throughput of 29.3M random 64B access per second per core. On

the other hand, an operation to access 64-byte key-value pair typically requires approx-

imately 100ns computation or approximately 500 instructions, which is too large to fit

in the instruction window (measured to be 100 to 200). When interleaved with compu-

tation, the performance a CPU core degrades to only 5.5 MOps. An optimization is to

batch memory accesses in a key-value store by clustering the computation for several

operations together before issuing the memory access all at once [31,210] . This improves

the per-core throughput to 7.9 MOps in our CPU, which is still far less than the through-

put of the host DRAM.

One can batch memory accesses in a key-value store, i.e., clustering the computa-

tion for several operations together before issuing the memory access all at once [31,210] .

Table 5.1 depicts the measured per-core hash table throughput under different key-value

sizes and batch sizes, assuming the key-value is inlined in hash table and each key-value

operation requires one non-cached memory access. The results fit the following formu-
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las within 10% error:

1
𝑅𝑎𝑛𝑑𝐴𝑐𝑐𝑒𝑠𝑠𝑇 ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑀𝑒𝑚𝐿𝑎𝑡𝑒𝑛𝑐𝑦

𝑃 𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚 (5.1)

1
𝐾𝑒𝑦𝑉 𝑎𝑙𝑢𝑒𝑂𝑝𝑇 ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒+

𝑀𝑒𝑚𝐿𝑎𝑡𝑒𝑛𝑐𝑦
𝑚𝑖𝑛(𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, 𝑃 𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚)

(5.2)

This indicates that when interleaved with computation, the performance of CPU de-

grades significantly. In the extreme case, even if the instruction window size or mem-

ory fetch parallelism goes to infinity, the per-core key-value operation throughput would

still be bounded by computation (∼10M op/s), 10∼20x slower than a single DDR chan-

nel.

5.2.2 Domain-Specific Architectures for Key-Value Storage

Ten years ago, processor frequency scaling was over and people turned to multi-

core and concurrency [211] . Nowadays, CMOS feature-size reduction is getting more

and more difficult, which implies that multi-core scaling is also over. People are turn-

ing to domain-specific architectures (DSAs) [212] for better performance. Several such

DSAs have been used to improve key-value storage performances.

For computation, DSAs such as GPU, FPGA [213? ] and ASIC [214-215] have been

quickly accepted by the market. For networking, DSAs are also deployed at scale

in datacenters, such as RDMA/RoCE network cards [216] , programmable network

cards [156,217] and programmable switches [107] .

1. One-sided RDMA

Due to high overhead in CPU network processing, DSAs to accelerate networking,

such as RDMA/RoCE network cards [216] , are deployed at scale in datacenters. High

performance key-value storage systems can leverage RDMA capable hardware. One

approach is to accelerate RPC with two-sided verbs in RDMA/RoCE network cards

(section 2, Figure 5.3a). By doing so, the key-value performance is bounded by CPU

(section ??).

A significantly different approach is to leverage one-sided RDMA to access remote

memory via the network card on the client and bypass the CPU on the server, as shown in

Figure 5.3b. In this approach, key-value computation and synchronization are handled

by the client CPU, therefore making the key-value server very light-weight and high

performance. Despite the high message rate (8M∼150M op/s [47] ) provided by RDMA

network cards, it is challenging to find an efficient match between RDMA primitives
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and key-value operations. For a write (PUT or atomic) operation, multiple network

round-trips and memory accesses may be required to handle hash conflicts, memory al-

location and fetch/save non-inline data. RDMA does not support transactions. Clients

must synchronize with each other to ensure consistency by either using RDMA atomics

or distributed atomic broadcast [218] , both incurring communication overhead and syn-

chronization latency [70,219] . As a consequence, most RDMA-based key-value storage,

e.g., Pilaf [219] , FaRM [70] and HERD [46] recommend using one-sided RDMA for GET

operations only. For PUT operations, they fall back to two-sided RDMA as RPC and

let the remote CPU do the actual work. Throughput of write-intensive workload is still

bottlenecked by CPU cores.

In addition to the mismatch between RDMA primitives and key-value operations,

implementation of commodity RDMA network cards also constrain key-value through-

put. For example, RDMA network cards hold a lock for atomic operations when a PCIe

DMA to the same memory address is in flight, which bounds RDMA atomics through-

put to ∼2M op/s [47] .

2. Highly parallel architectures

Highly parallel architectures such as many-core processors [220] , GPGPU [209] .

3. FPGA

FPGA [221-224,224? ? ? -226] have been explored to overcome the limited parallelism

of CPU in accessing DRAM. Compared to general-purpose processors, FPGA has more

flexible pipeline parallelism and can be specialized for the key-value store application.

Compared to RDMA, FPGA can support key-value operation primitives directly, as

well as specializing network packet format and PCIe DMA operations to use network

and PCIe bandwidth efficiently. Compared to GPGPU, FPGA is more power-efficient

and has lower latency.

In recent years, FPGA is becoming cost-effective and is getting deployed at scale in

datacenters [213? ] . Its programmability has been greatly improved [156] . Most existing

work store the entire hash table inside the on-board DRAM,which is often quite limiting

(typically on the order of 4∼16 GiB), while the host DRAM is often large (on the order

of 100∼500 GiB). KV-Direct follows this line of work, while leveraging host DRAM
for key-value storage, as depicted in Figure 5.3c.

KV-Direct leverages a programmable network card with large-scale deployments

in datacenters. The programmable network card is composed of two parts: a traditional

RDMA network card plus a field-programmable gate array (FPGA). There has been

research on leveraging the reconfigurability of the network card for network processing,
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e.g., network virtualization [217,227] and network functions [156] . KV-Direct extends the

application of programmable network cards to a novel area: key-value stores.

5.2.3 Concept of Key-Value Storage

As the name suggests, key-value storage stores an unordered collection of key-

value pairs. Both the key and value are variable-length arbitrary strings. In a key-value

store, the same key can only appear once. The basic operations of key-value storage are

GET and PUT. The GET operation inputs a key and outputs the corresponding value.

The PUT operation inputs a key-value pair and saves it to the key-value store. If there is

the same key, the original key-value pair is deleted and the new key-value pair is saved.

To efficiently support read and write operations, key-value storage is usually based on

a hash table. Whether it is a GET or PUT operation, it first calculates the hash value of

the key and looks it up in the hash table. For the PUT operation, it may need to allocate

memory for the new key-value pair and release the memory occupied by the original

key-value pair of the same key. In distributed systems, key-value storage is often used

as a service, receiving GET and PUT operations from network clients, and sending the

processing results back to the clients through the network.

5.2.4 Workload Shift in Key-Value Storage

Historically, key-value stores like Memcached [205] gained popularity as object

caching systems for web services. In the era of in-memory computing, key-value stores

have transcended caching to become infrastructure services for storing shared data struc-

tures in distributed systems. Many data structures can be represented in key-value hash

tables, such as data indices inNoSQL databases [65] , model parameters inmachine learn-

ing [81] , nodes and edges in graph computing [98,228] , and sequence number generators in

distributed synchronization [47,229] . In the future, in-memory key-value stores can also

provide high-performance temporary storage for serverless computing [100] .

The shift in workload from object caching to general data structure storage implies

several new design goals for key-value stores.

High throughput for small key-values. In-memory computing often involves

large batch access to small key-value pairs, such as sparse parameters in linear regres-

sion [34,98] or all neighbor nodes in graph traversal [228] , so key-value stores can benefit

from batch processing and pipelining operations.

Predictable low latency. For many data-parallel computing tasks, the latency

of iterations is determined by the slowest operation [29] . Therefore, controlling the tail
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latency of key-value stores is very important. CPU-based designs often need to balance

latency and throughput by adjusting batch size [31] . Moreover, due to irregular schedul-

ing by the operating system, unpredictable hardware interrupts, and cache misses, CPU

processing time may fluctuate significantly under high load [156] .

High efficiency under write-intensive workloads. For caching workloads, the

number of reads in key-value stores is usually more than writes [230] , but this is no longer

the case for distributed computing workloads such as graph computing [69] and param-

eter servers [81] . For PageRank computation in graphs [69] or gradient descent in pa-

rameter servers [81] , each iteration cycle reads and writes each node or parameter once.

Key-value stores need to provide an equal number of GET (read) and PUT (write) op-

erations. Sequencers [47] require atomic increment operations rather than read-only op-

erations. These workloads require a hash table structure that can efficiently handle read

and write operations simultaneously.

Fast atomic operations. Several very popular applications require atomic opera-

tions, such as centralized schedulers [231] , sequencers [47,229] , counters [232] , and tempo-

rary values in web applications [230] . This requires high-throughput atomic operations

on single keys.

Vector operations. Machine learning and graph computing workloads [81,98,228]

often require operations on each element in a vector, such as adding a scalar to each

element in a vector, or reducing a vector to the sum of its elements. Key-value stores

without vector support require the client to issue a key-value store operation for each

element in the vector, or to retrieve the entire vector as a large key-value pair, bring it

back to the client, and perform the operation. If key-value stores support vector data

types and operations, it can greatly reduce network communication and CPU computa-

tion overhead.

5.2.5 Performance Bottlenecks of Existing Key-Value Storage Sys-

tems

Building high-performance key-value stores requires global optimization of vari-

ous software and hardware components in the computer system. Depending on where

the data structure is processed, the state-of-the-art high-performance key-value storage

systems can be basically divided into three categories: on the CPU of the key-value

storage server (Figure 5.3a), on the key-value storage client (Figure 5.3b), or on the

hardware accelerator (Figure 5.3c).

When network overhead is reduced to the limit, the throughput bottleneck of high-
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Figure 5.3 Design space of key-value storage data paths and processing devices. Rows repre-
sent data paths. A key-value operation (thin line) may requiremultiple address-basedmemory
accesses (thick line). The black box indicates where key-value processing occurs.

performance key-value storage systems can be attributed to the latency in key-value

operations and random memory access. CPU-based key-value storage requires CPU

cycles for key comparison and hash slot calculation. In addition, the key-value storage

hash table is several orders of magnitude larger than the CPU cache, so the memory

access latency is mainly determined by the cache miss latency under the actual access

pattern.

Measurements show that the 64-byte random read latency of modern computers

is about 100 ns ①. The CPU core can issue multiple memory access instructions at

the same time, limited by the number of load-store units in the core (such as 3 to

4) [207-209] ②. As shown in Figure 5.4 and Table 5.1, in the CPU used in this paper’s

experiment, each core has a maximum throughput of 29.3 M random 64B accesses per

second. On the other hand, the operation of accessing a 64-byte key-value pair usu-

ally requires about 100 ns of computation or about 500 instructions, which cannot fit

into the instruction window ③. When random memory access and computation are in-

terleaved, due to the instruction window not being able to cover the memory access

latency, the performance of the CPU core is reduced to 5.5 M key-value operations

(Mops) per second. One optimization method is to aggregate the computation of multi-

ple key-value storage operations before issuing a memory access, and perform memory

access in batches [31,210] . This optimization can increase the per-core key-value opera-

tion throughput of the CPU used in this paper to 7.9 MOps, which is still far lower than

the random 64B throughput of the host DRAM.
①This random read latency assumes a normal page size of 4 KiB, taking into account the latency of TLB misses

and data cache line misses.
②Although there may be dozens of load-store units in each core of the CPU microarchitecture, 64-byte random

memory access will cause multiple TLB misses and data cache line misses, so in the actual measurements of this
paper, only 3 to 4 random memory access operations can be completed within one memory access latency.
③The instruction window is the maximum number of instructions that the CPU out-of-order execution engine

can rearrange. If there are more than the number of instructions in the instruction window after a memory access
instruction, and the memory access latency is greater than the time to execute the number of instructions in the
instruction window, then due to the limitation of the instruction window, the pipeline needs to pause (stall) after
executing the number of instructions in the instruction window, waiting for the memory access result to return,
before it can continue to execute subsequent computation instructions. On the CPU we used, the measured size of
the instruction window is about 100 to 200.
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Figure 5.4 CPU random memory access performance.

Table 5.1 Throughput (millions of operations per second) under different workloads
and memory access granularities.

Size (bytes) Computation only Memory access only Computation and memory access (batch size)
1 2 3 4

32 24.1 44.0 7.5 11.1 13.1 14.1
64 11.1 29.3 5.5 6.7 7.6 7.9
128 5.4 18.3 3.5 4.1 4.3 4.1
256 2.7 13.2 2.1 2.2 2.2 2.1
512 1.3 8.2 1.2 1.1 1.2 1.1

Observing the limited capacity of the CPU in key-value processing, recent work

has used one-sided RDMA to offload key-value processing to the client. One-sided

RDMA provides an abstraction of remote access to shared memory. The server-side

application registers a block of memory with the local RDMA network card for shared

memory. When the client application needs to read and write this shared memory, it

sends an RDMA read or write work request to the local RDMA network card. The

client RDMA network card converts the work request into a network packet and sends

it to the server RDMA network card. The server RDMA network card converts the

received packet into a PCIe DMA request, accesses the shared memory, and returns the

result to the client RDMA network card. The client RDMA network card sends the

read data to the application’s memory buffer through PCIe DMA, and then notifies the

application through work completion. In this process, the server-side RDMA network

card handles read and write requests, completely bypassing the server-side CPU ①.

Although RDMA network cards provide high message throughput (8 to

150 Mops [47] ), finding an efficient match between RDMA primitives and key-value

operations is a challenge. For write (PUT or atomic) operations, multiple network
①In the modern data center server architecture, this statement is not rigorous, because the PCIe root complex and

memory controller are both inside the host CPU, and the network card accesses the host memory through PCIe DMA
must go through the CPU. This paper’s ”bypassing the CPU” follows the customary usage in the system academic
community, which is a logical meaning, that is, bypassing the software processing on the CPU core. In the system
architecture diagram of this paper, the CPU also refers to software processing. The term ”bypassing the CPU” will
appear many times in the following text, all with this meaning.
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Figure 5.5 Random PCIe DMA performance.

round trips and multiple memory accesses may be required to query the hash index,

handle hash conflicts, and allocate variable-sized memory. RDMA does not support

transactions. To maintain the consistency of data structures, clients must synchro-

nize with each other, using RDMA atomic operations or distributed atomic broad-

casts [218] . Both of these schemes generate communication overhead and synchro-

nization latency [70,219] . Therefore, most RDMA-based key-value stores [46,70,219] sug-

gest using one-sided RDMA only for GET (read-only) operations. For write (PUT or

atomic) operations, they fall back to using the server CPU for processing. Therefore, the

throughput of write-intensive workloads is still limited by the bottleneck of the server

CPU.

5.2.6 Challenges Faced by Remote Direct Key-Value Access

KV-Direct moves key-value processing from the CPU to the programmable net-

work card in the server (Figure 5.3c). Like RDMA, theKV-Direct network card accesses

host memory via PCIe. PCIe is a packet-switched network with a round-trip latency of

about 500 ns and a theoretical bandwidth of 7.87 GB/s per Gen3 x8 endpoint. In terms

of latency, because the FPGA hard core used in this paper has an additional processing

delay of about 300 ns, the programmable network card reads host memory that has been

cached by the CPU via PCIe DMA, with a latency of 800 ns. When randomly DMA

reading uncached host memory, there is an additional average delay of 250 ns due to

DRAM access, DRAM refresh, and PCIe response reordering in the PCIe DMA en-

gine (Figure 5.5b). In terms of throughput, each DMA read or write operation requires

a PCIe transport layer packet (TLP) with a 26-byte header and padding for 64-bit ad-

dressing. For a PCIe Gen3 x8 network card that accesses host memory at a granularity

of 64 bytes, the theoretical throughput is therefore 5.6 GB/s or 87 Mops.

To saturate the throughput of the PCIe Gen3 x8 interface using 64-byte DMA
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requests, considering a latency of 1050 ns, 92 concurrent DMA requests are needed.

However, two practical factors further limit the concurrency of DMA requests. First,

the number of requests being processed for each type of DMA is limited by PCIe credit-

based flow control. The PCIe root complex in the server announces 88 PCIe transport

layer packet (TLP) credits for DMA posted operations and 84 TLP credits for DMA

non-posted operations. This means that the number of concurrent write operations can-

not exceed 88, and the number of concurrent read operations cannot exceed 84. Second,

DMA read operations require the allocation of unique PCIe tags to identify and reorder

DMA responses. Although the PCIe protocol andmanymemory controllers support 256

PCIe tags, the DMA engine in the FPGA used in this paper only supports 64 PCIe tags,

further limiting the number of concurrent DMA read requests to 64. This results in a

PCIe DMA read throughput of only 60 Mops (million operations per second), as shown

in Figure 5.5a. On the other hand, for a 40 Gbps network and 64-byte key-value pairs, if

the client sends these key-value pairs in batches, the upper limit of network throughput

is 78 Mops. This paper aims to saturate network throughput with GET (read) opera-

tions. Therefore, the key-value store on the network card must fully utilize the PCIe

bandwidth, i.e., the average number of memory accesses per GET operation needs to

be close to 1. This boils down to three challenges:

Minimize the number of DMA requests per key-value operation. The hash

table and memory allocator are the two main components in the key-value store that

require random memory access. Previous work suggests using Cuckoo hash, which

keeps the number of memory accesses per GET operation close to 1 even under high

load factors. However, Cuckoo hash is optimized for read operations. At load factors

above 50

In addition to hash table lookups, dynamic memory allocation is needed to store

variable-length key-values that cannot be inlined in the hash table. To match PCIe and

network throughput under write-intensive small key-value workloads (i.e., to nearly

fully utilize both), the number of memory accesses for hash table lookups and memory

allocation should be minimized.

Hide PCIe latency while maintaining consistency. Consistency is a term in

distributed transactions that refers to the property of logical isolation between concur-

rently executing transactions. Different hardware modules inside a programmable net-

work card process in parallel, forming a distributed system. Since a key-value operation

requires multiple memory read-write accesses, when multiple key-value operations are

processed concurrently, each key-value operation can be considered a distributed trans-
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action. This paper implements strict serializability, i.e., the result of concurrently ex-

ecuting multiple key-value operations is the same as if they were executed one after

another in the order of network input. Strict serializability is the strongest consistency

standard for distributed transactions.

In the FPGA platform of this article, the latency of a PCIe DMA operation is about

1 𝜇s. When the programmable network card processes key-value requests, if it does

nothing else while waiting for the DMA read operation to return, then the throughput

of the key-value request will only be about 1 Mops, which is obviously unacceptable.

Therefore, high-performance key-value storage on programmable network cards must

concurrently execute key-value operations and DMA requests to hide PCIe latency.

However, key-value operations may have dependencies, and not all key-value opera-

tions can be executed concurrently. For example, a GET operation after a PUT operation

on the same key needs to return the updated value. Again, two adjacent atomic incre-

ment operations need to wait for the first one to complete before executing the second

one. This requires tracking the key-value operations being processed, and pausing the

pipeline in the event of a data hazard, or better designing an out-of-order executor to

solve data dependencies without explicitly pausing the pipeline.

Allocate load between network card DRAM and host memory. An obvi-

ous idea is to use the DRAM on the network card as a cache for host memory, but on

the network card, the DRAM throughput (12.8 GB/s) is comparable to the achievable

throughput of two PCIe Gen3 x8 interfaces (13.2 GB/s). This article expects to allocate

memory access between DRAM and host memory to take advantage of their two band-

widths. However, compared with host memory (64 GiB), the on-board DRAM is small

(4 GiB), so a mixed cache and load scheduling method is needed.

The following will introduce KV-Direct, a new FPGA-based key-value storage

system that meets all the above design goals.

5.3 KV-Direct Operation Primitives

KV-Direct extends the Remote Direct Memory Access (RDMA) primitives to

remote direct key-value access primitives, as shown in Table 5.2. The client sends

KV-Direct operations to the key-value storage server, and the programmable network

card processes the requests and sends back the results, bypassing the CPU. The pro-

grammable network card on the key-value storage server is an FPGA reconfigured as a

key-value processor.
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In addition to the standard key-value storage operations shown at the top of Table

5.2, KV-Direct also supports two types of vector operations: sending a scalar to the

network card on the server, the network card will apply the update to each element in

the vector; or sending a vector to the server, and the network card updates the original

vector element by element. Furthermore, KV-Direct supports including user-defined

functions in atomic operations. User-defined functions need to be pre-registered and

compiled into hardware logic, indexed at runtime using the function ID. Key-value op-

erations using user-defined functions are similar to active messages [204] , saving the

communication and synchronization costs of retrieving the key-value to the client for

processing.
Table 5.2 KV-Direct operations.

get (𝑘) → 𝑣 Get the value of key 𝑘.
put (𝑘, 𝑣) → bool Insert or replace the pair (𝑘, 𝑣).
delete (𝑘) → bool Delete key 𝑘.

update_scalar2scalar (𝑘, Δ, 𝜆(𝑣, Δ) →
𝑣) → 𝑣

Atomically update key 𝑘 using function 𝜆, acting
on Δ, returning the original value.

update_scalar2vector (𝑘, Δ, 𝜆(𝑣, Δ) →
𝑣) → [𝑣]

Atomically update all elements in key 𝑘 using
function 𝜆 and scalarΔ, returning the original vec-
tor.

update_vector2vector
(𝑘, [Δ], 𝜆(𝑣, Δ) → 𝑣) → [𝑣]

Atomically update all elements in key 𝑘 using
function 𝜆, based on corresponding elements in
vector [Δ], and return the original vector.

reduce (𝑘, Σ, 𝜆(𝑣, Σ) → Σ) → Σ Reduce vector 𝑘 to a scalar using function 𝜆, and
return the reduced result Σ.

filter (𝑘, 𝜆(𝑣) → bool) → [𝑣] Filter elements in vector 𝑘 using function 𝜆, and
return the filtered vector.

When performing vector operation updates (update), reductions (reduce), or filters

(filter) on a key, its value is considered an array of fixed-width elements. Each function

𝜆 operates on an element in the vector, client-specified parameter Δ, and/or initial value
Σ for reduction. Based on the KV-Direct development toolchain from Chapter 4, user-

defined function 𝜆 is replicated multiple times to exploit the parallelism in FPGA and

match the computation throughput with the throughput of other components in the key-

value processor, then compiled into reconfigurable hardware logic using High-Level

Synthesis (HLS) tools [57-58] . Thanks to the design from Chapter 4, the development

toolchain automatically extracts data dependencies in the replicated function and gen-

erates fully pipelined programmable logic. Before the key-value storage client starts

running, the programmable network card on the key-value storage server should load

the hardware logic of user-defined function 𝜆.
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Using user-defined functions, common stream processing can be implemented in

vector operations. For example, network processing applications can interpret this

vector as a packet stream for network functions, or a set of states for packet transac-

tions [233] . It is even possible to implement single-object transaction processing entirely

within programmable network cards, such as the operation of resetting S_QUANTITY

to zero after reaching the threshold in the TPC-C benchmark test [234] . Vector reduc-

tion operations can support the calculation of accumulating neighbor node weights in

PageRank [69] . Vector filtering operations can also be used to obtain non-zero values in

sparse vectors.

5.4 Key-Value Processor

Figure 5.6 Architecture of the key-value processor.

As shown in Figure 5.6, the key-value processor receives packets from the on-

board network card, decodes vector operations, and buffers key-value operations in the

reservation station ① (Section 5.4.3). Next, the out-of-order execution engine (Section

5.4.3) sends concurrently executable key-value operations from the reservation station

to the key-value operation decoder. Depending on the operation type, the key-value

processor looks up the hash table (Section 5.4.1) and performs the corresponding op-

eration. To minimize memory access times, smaller key-value pairs are stored inline

in the hash table, while other key-value pairs are stored in dynamically allocated mem-

ory in the slab memory allocator (Section 5.4.2). Both the hash index and the memory

allocated by the slab are managed by a unified memory access engine (Section 5.4.4),

which accesses the host memory via PCIe DMA and caches part of the host memory

in the onboard DRAM. After the key-value operation is completed, the result is sent
①The reservation station is a concept in computer architecture that stores operations to be executed and schedules

appropriate operations for concurrent execution.
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back to the out-of-order execution engine (Section 5.4.3), which looks for key-value

operations that depend on it in the reservation station and executes them.

As discussed in Section 5.2.6, the scarcity of PCIe throughput requires the key-

value processor to save DMA access. For GET operations, at least one memory read

is required. For PUT or DELETE operations, for the hash table data structure, at least

one read and one write are required ①. Log-based data structures can achieve less than

one write operation per PUT on average, but it sacrifices GET performance. KV-Direct

carefully designs the hash table to achieve near-ideal DMA access for each lookup and

insertion. KV-Direct also carefully designs the memory allocator so that each dynamic

memory allocation averages less than 0.1 DMA operations.

5.4.1 Hash Table

To store variable-sized key-values, key-value storage is divided into two parts.

The first part is the hash index (Figure 5.7), which contains a fixed number of hash

buckets. Each hash bucket contains several hash slots and some metadata. The rest of

the memory is dynamically allocated and managed by the slab allocator (Section 5.4.2).

The hash index ratio configured at initialization is the proportion of the size of the hash

index to the total memory size of the key-value storage. The choice of hash index ratio

will be discussed in Section 5.4.1.

Figure 5.7 Hash index structure. Each row is a hash bucket, containing 10 hash slots, each
hash slot includes 3 bits of slab memory type, a bitmap marking the start and end of inline
key-value pairs, and a pointer to the next linked bucket in case of hash collision.

Each hash slot includes a pointer to the key-value data in dynamically allocated

memory and an auxiliary hash. The auxiliary hash is an optimization that uses another

hash function independent of the main hash function. Since there are multiple hash

slots in each hash bucket, the key-value processor needs to determine which hash slot

corresponds to the key to be found. With a 9-bit auxiliary hash, it can be determinedwith

a probability of 511/512 which is the key to be found. However, to ensure correctness,

an additional memory access is still needed to fetch the key and compare it byte by
①The read operation takes out the key in the hash slot. If the slot is empty or the same as the key to be searched,

and no memory space needs to be reallocated, a write operation is required to write back the data
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byte. Assuming a 64 GiB key-value storage in the host memory and a 32-byte allocation

granularity ①, the pointer requires 31 bits. The size of each hash slot is 5 bytes ②. To

determine the size of the hash bucket, a trade-off needs to be made between the number

of hash slots in each bucket and the DMA throughput. Figure 5.5a shows that when

the granularity is less than 64B, the DMA read throughput is constrained by the PCIe

latency and parallelism in the DMA engine. A bucket size less than 64B will increase

the possibility of hash collisions. On the other hand, increasing the bucket size to more

than 64B will reduce the throughput of hash lookups. Therefore, the bucket size is

chosen to be 64 bytes.

The key-value size refers to the total size of the key and value. Key-values smaller

than the threshold size are stored inline in the hash index to save additional memory

accesses to fetch the key-value data. Inline key-values can span multiple hash slots,

and their pointer and auxiliary hash fields are reused to store key-value data. Inlining

all key-values that can fit into the hash index may not be the best choice. An inline key-

value may occupy multiple hash slots, reducing the number of key-values that the hash

table can store. If the capacity of the hash table allows, inlining key-values can reduce

the average number ofmemory accesses. For this, KV-Direct selects the inline threshold

based on the proportion of the hash table that is filled, and inlines key-values smaller

than this threshold. Traditionally, the load factor③ is used to measure the proportion of

the hash table that is filled, but this ignores the overhead brought by the metadata and

internal fragmentation of the hash table. To compare the choices of different parameters

of the hash table more scientifically, this chapter uses memory utilization ④. As shown

in Figure 5.8, for a certain inline threshold, the average number of memory accesses per

key-value operation increases with the increase of memory utilization due to more hash

collisions. Under a higher inline threshold, the growth curve of the average number

of memory accesses is steeper. Therefore, the optimal inline threshold can be found to

minimize the number of memory accesses at a given memory utilization. Like the hash

index ratio, the inline threshold can also be configured at initialization.

When all the hash slots in the hash bucket are filled, there are several solutions to

solve the hash collision. Cuckoo Hashing [235] and Hopscotch Hashing [236] ensure that
①The 32-byte allocation granularity balances the internal fragmentation and the overhead for memory allocation

metadata.
②The design parameters in this paper are configured according to the parameters of the hardware platform used

in this paper. For memory of different capacities, parameters such as hash slot size and pointer bit width may change.
③The load factor is the ratio of the number of occupied hash slots to the total number of hash slots.
④Memory utilization is the ratio of the sum of the sizes of all key-values in the key-value storage to the total size

of the key-value storage. Due to the existence of metadata and internal fragmentation, memory utilization is always
less than 1.
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Figure 5.8 Average number of memory accesses and memory utilization under different in-
line thresholds.

newly inserted key-values are always inserted into the hash bucket by moving occupied

hash slots during the insertion process, so that only a constant number of hash slots

in the same hash bucket need to be compared during the lookup, achieving constant

time lookup. However, in write-intensive workloads, the memory access time under

high load rates can fluctuate significantly. In extreme cases, insertion may even fail,

requiring hash table expansion. Another solution to hash collisions is linear probing,

which may be affected by clustering, so its performance is sensitive to the uniformity of

the hash function. For this, this paper chooses chaining to solve hash collisions, which

balances the performance of lookup and insertion, and is more robust to hash clustering.

To compare KV-Direct’s chaining, bucketized Cuckoo Hash in MemC3 [33] , and

chain associative Hopscotch Hash in FaRM [70] , Figure 5.9 plots the average number

of memory accesses per GET and PUT operation in three possible hash table designs.

In the KV-Direct experiment, the best choices are made for the inline threshold and

hash index ratio for a given key-value size and memory utilization requirement. In the

Cuckoo and Hopscotch hash experiments, it is assumed that the key is inlined and can

be compared in parallel, and the value is stored in dynamically allocated slab storage.

Since the hash tables of MemC3 and FaRM cannot support a memory utilization rate of

more than 55

For inline key-values, each GET operation in KV-Direct only requires close to 1

memory access, and each PUT also only requires 2memory accesses under non-extreme

memory utilization. Non-inline key-values have one additional memory access for GET

and PUT. Comparing KV-Direct and chained hopscotch hashing under high memory

utilization, hopscotch hashing performs better in GET but worse in PUT. Although KV-

Direct cannot guarantee the worst-case DMA access times, it will balance between GET

and PUT. The GET operation of cuckoo hashing can guarantee access to at most two
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(a) 10B GET.
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(b) 10B PUT.
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(c) 254B GET.
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Figure 5.9 Number of memory accesses per key-value operation.

hash slots, so under most memory utilizations, KV-Direct has more memory accesses.

However, under high memory utilization, cuckoo hashing will cause a large fluctuation

in the number of memory accesses for PUT operations.

There are two free parameters in the hash table design: (1) inline threshold, (2)

the ratio of hash index in the entire memory space. As shown in Figure 5.10a, as the

hash index ratio grows, more key-value pairs can be stored inline, resulting in a lower

average number of memory accesses. Figure 5.10b shows the increased number of

memory accesses with the use of more memory.
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(a) Fixed memory utilization 0.5.
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Figure 5.10 Memory occupancy at different memory utilization or hash index ratios.

As shown in Figure 5.11, the maximum memory utilization decreases when the
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hash index ratio is high, because less memory is available for dynamic allocation.

Therefore, to accommodate all key-values to be stored in a given memory space, the

hash index ratio has an upper limit. This section chooses this upper limit to obtain the

minimum average number of memory accesses, as shown by the dashed line in Figure

5.11, first according to the target memory utilization, to get a large hash index ratio; then

according to the hash index ratio, the average number of memory accesses required for

the GET operation to find the index can be theoretically obtained.

Figure 5.11 How to determine the optimal hash index rate given the memory utilization re-
quirement and key-value size.

5.4.2 Slab Memory Allocator

Chain hash slots and non-inline key-values require dynamic memory allocation.

For this, this chapter chooses the slab memory allocator [237] to achieve 𝑂(1) average
memory access times for each memory allocation and release. The main slab allocator

logic runs on the host CPU and communicates with the key-value processor via PCIe.

The slab allocator rounds the allocation size to the nearest power of 2, known as slab

size. It maintains a free slab pool for each possible slab size (32, 64, …, 512 bytes) and

a global allocation bitmap to help merge small free slabs back into larger slabs. Each

free slab pool is an array of slab entries, consisting of an address field and a slab type

field. The slab type field indicates the size of the slab entry.

The available slab pool can be cached on the network card and synchronized with

the host memory. Through batch PCIe DMA synchronization operations, each memory

allocation or release requires less than 0.07 DMA operations on average. When a free

slab pool is almost empty, it is necessary to split larger slabs. Because the slab type

is already included in the slab entry, during slab splitting, slab entries only need to be

copied from the larger pool to the smaller pool, without needing to split into multiple

small slab entries.

During reallocation, the slab allocator needs to check whether the released slab
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can be merged with its neighbors, requiring at least one read and write to the allocation

bitmap. Inspired by garbage collection, lazy slab merging on the host merges free slabs

in bulk when a slab pool is almost empty and there are not enough slabs in a larger slab

pool to split.

Hashtable

32B stack

512B stack Sync

NIC side Host side

merger

Splitter

Host Daemon32B stack

512B stack

Figure 5.12 Slab memory allocator.

As shown in Figure 5.12, for each slab size, the slab cache on the network card

uses two double-end stacks to synchronize with the host DRAM. The left end of the

network card’s double-end stack (the left side in Figure 5.12) is popped by the allocator

and pushed by the deallocator, and the right end synchronizes with the corresponding

host end double-end stack via DMA. The network card monitors the size of the network

card stack and synchronizes with the host stack according to the high watermark and

low watermark. The host daemon periodically checks the size of the host end double-

end stack. If it is higher than the high watermark, it triggers slab merging; if it is lower

than the low watermark, it triggers slab splitting. Because each end of the double-end

stack is exclusively accessed by either the network card or the host, and data is moved

before moving the pointer, race conditions will not occur as long as the amount of data

in the double-end stack is greater than the protection threshold.

The communication overhead of the slab memory allocator comes from the net-

work card accessing the available slab queue in the host memory. In this chapter, each

slab entry is 5 bytes, the DMA granularity is 64 bytes, so the amortized DMA over-

head for each slab operation is 5/64 DMA operations. In addition, newly released slab

slots on the network card can often be reused by subsequent allocation operations on

the network card, so in many cases, no DMA operation is needed at all. To maintain

a maximum throughput of 180M operations per second, in the worst case, 180M slab

entries need to be transferred, consuming 720 MB/s PCIe throughput, which is 5

The computational overhead of the slab memory allocator comes from slab split-

ting and merging on the host CPU. Fortunately, they are not often called. For workloads

with a stable key-value size distribution, newly released slab slots are reused by subse-

quent allocations, so they do not trigger splitting and merging.
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Figure 5.13 Time overhead of merging 4 billion slab slots.

Slab splitting requires moving continuous slab entries from one slab queue to an-

other. When the workload switches from large key-values to small key-values, in the

worst case, the CPU needs to move 90M slab entries per second, which only takes up

10

Merging available slab entries into larger slab entries is a fairly time-consuming

task, as this garbage collection process needs to fill the allocation bitmap with the ad-

dresses of slab entries, thus requiring random memory access. To sort the addresses of

available slab entries and merge continuous slabs, radix sort [238] has better multi-core

scalability than a simple bitmap. As shown in Figure 5.13, merging all 4 billion free slab

slots in a 16 GiB vector takes 30 seconds on a single CPU core, but only 1.8 seconds

on 32 cores using radix sort [238] . Although garbage collection of free slab slots takes a

few seconds, it runs in the background without stopping the slab allocator, and in fact

only triggers when the workload switches from small key-values to large key-values.

5.4.3 Out-of-Order Execution Engine

In the key-value processor, the dependency between two key-value operations with

the same key can lead to data hazards and pipeline stalls. This problem is more pro-

nounced in single-key atomics, where all operations are dependent and must be pro-

cessed one by one, limiting the throughput of atomic operations. This section borrows

the concept of dynamic scheduling from the field of computer architecture and imple-

ments a reservation station to track all ongoing key-value operations and their execution

contexts.

To fully utilize PCIe, DRAM bandwidth, and processing pipelines, up to 256 con-

current key-value operations are needed. However, parallel comparison of 256 16-byte

keys would occupy 40% of the FPGA’s logical resources. To avoid parallel compari-

son, this section stores key-value operations in a small hash table in on-chip BRAM,
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indexed by the hash of the key. Key-value operations with the same hash value are con-

sidered to have dependencies. Different keys may have the same hash value, so there

may be false dependencies, but it will never miss dependencies. Key-value operations

with the same hash are organized into a linked list structure, processed sequentially by

the key-value processor. Hash collisions increase false dependencies and reduce key-

value processing efficiency, so the reservation station includes 1024 hash slots, keeping

the possibility of hash collisions below 25%.

The reservation station not only saves operations temporarily suspended due to de-

pendencies but also caches recently accessed key-values for data forwarding. When the

main processing pipeline completes a key-value operation, its result is returned to the

client, and the latest value is forwarded to the reservation station. The reservation station

checks pending operations in the same hash slot one by one, immediately executes oper-

ations with matching keys, and removes them from the reservation station. For atomic

operations, calculations are performed in a dedicated execution engine. For write op-

erations, the cached value is updated. The execution result is returned directly to the

client. After scanning the dependency linked list, if the value cached in the reservation

station has been updated, a PUT operation is issued to the main processing pipeline to

write the cache back to the main memory. This data forwarding and fast execution path

allows single-key atomic operations to process an operation per clock cycle①, eliminat-

ing head-of-line blocking for frequently accessed keys. The reservation station ensures

data consistency, as no two operations on the same key can proceed simultaneously in

the main processing pipeline. Figure 5.14 describes the structure of the out-of-order

execution engine.

The following evaluates the effectiveness of out-of-order execution. The work-

loads used include single-key atomics and long-tail distribution. The comparison

method is a simple method that stalls the pipeline when a key conflict is encountered.

The throughput of one-sided RDMA and two-sided RDMA [47] is used as a baseline.

Without the out-of-order execution engine, atomic operations have to wait for PCIe

latency and processing latency in the network card, during which subsequent atomic op-

erations on the same key cannot be executed. As shown in Figure 5.15a, the throughput

of single-key atomic operations with the pipeline stalling method is 0.94 Mops, close

to the 2.24 Mops measured using a commercial RDMA network card [47] . The higher

throughput of the commercial RDMA network card can be attributed to its higher clock
①The clock frequency of the FPGA key-value processor in this chapter is 180 MHz, so the throughput can reach

180 M op/s.
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Figure 5.14 Out-of-order execution engine.
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Figure 5.15 Efficiency of the out-of-order execution engine.

frequency and lower processing latency. With out-of-order execution, KV-Direct’s

single-key atomic operations can reach peak throughput, processing one key-value op-

eration per clock cycle. In MICA [30] , the throughput of single-key atomics is limited by

the processing capability of a single CPU core and cannot scale with multiple cores. In

fact, the performance of atomic increment operations can scale with multiple cores [47] ,

but it relies on the commutativity between atomic operations, so it is not applicable to

non-commutative atomic operations, such as compare-and-swap.

By utilizing out-of-order execution, the single-key atomic throughput has in-

creased by 191 times, reaching the clock frequency limit of 180 Mops. When atomic

operations are evenly distributed among multiple keys, the throughput of single-sided

RDMA, double-sided RDMA, and KV-Direct without out-of-order execution grows lin-

early with the number of keys, but it still has a significant gap compared to the best

throughput of KV-Direct using out-of-order execution.

Figure 5.15b shows the throughput under long-tail workloads. When a PUT oper-
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ation finds any ongoing operation with the same key in the pipeline, the pipeline will

pause. Long-tail workloads have multiple keys that are accessed very frequently, so

two operations with the same key are likely to arrive almost simultaneously. When the

proportion of PUT operations in all operations is higher, it is more likely that at least one

of the two operations with the same key is a PUT operation, which triggers the pipeline

to pause.

5.4.4 DRAM Load Balancer

To further alleviate the burden of PCIe, this section schedules memory access be-

tween PCIe and the onboard DRAM of the network card. The network card DRAM

has a capacity of 4 GiB and a throughput of 12.8 GB/s, which is an order of magnitude

smaller than the key-value storage on the host DRAM (64 GiB) and slightly slower than

the PCIe link (14 GB/s). One method is to put a fixed part of the key-value storage into

the network card DRAM. However, the network card DRAM is too small to hold only

a small part of the entire key-value storage. Another method is to use the network card

DRAM as a cache for the host memory, but the throughput may even decrease due to the

limited throughput of the network card DRAM (even lower than the PCIe throughput).

Figure 5.16 DRAM load balancer.

This section adopts a hybrid solution, using DRAM as a cache for a fixed part

of the key-value storage in the host memory, as shown in Figure 5.16. The cacheable

part is determined by the hash of the memory address, with a granularity of 64 bytes

(DRAMmemory access granularity). Choose a hash function so that the hash index and

the address in the dynamically allocated memory have the same cache probability. The

part of the cacheable memory in the entire key-value storage memory is called the load

distribution ratio (𝑙). If the load distribution ratio 𝑙 increases, a larger proportion of the
load will be allocated to the onboard DRAM, and the cache hit rate ℎ(𝑙) will increase.
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To balance the load on PCIe and onboard DRAM, the load scheduling ratio 𝑙 should be
optimized so that:

𝑙
𝑡𝑝𝑢𝑡𝐷𝑅𝐴𝑀

= (1 − 𝑙) + 𝑙 ⋅ (1 − ℎ(𝑙))
𝑡𝑝𝑢𝑡𝑃 𝐶𝐼𝑒

Specifically, under uniform load, let 𝑘 be the ratio of the size of the onboard

DRAM to the size of the host key-value storage, then the cache hit rate ℎ(𝑙) =
cache size

cache-able memory size = 𝑘
𝑙 . When 𝑘 ≤ 𝑙, the cache under uniform load is not efficient.

Under long-tail load (Zipf distribution), let 𝑛 be the total number of key-values, then

roughly ℎ(𝑙) = log(cache size)
log(cache-able part size) = log(𝑘𝑛)

log(𝑙𝑛) , when 𝑘 ≤ 𝑙. Under long-tail workloads,
the cache hit probability of 1M cache in 1G key-value storage is as high as 0.7. The

optimal 𝑙 can be obtained numerically, which will be discussed in section 5.7.1.
A technical challenge is to store metadata in the DRAM cache. For each cache

line of 64 bytes, 4 address bits and a dirty flag bit of metadata are required. Because

all key-value storage is accessed by the network card, no cache valid bit is needed. To

store the 5 metadata bits of each cache line, if the cache line is expanded to 65 bytes, the

DRAM performance will be reduced due to unaligned access; if the metadata is stored

elsewhere, the number of memory accesses will double. Instead, this paper uses the

spare bits in ECC (Error Correction Code) DRAM for metadata storage. ECC DRAM

usually has 8 ECC bits for every 64 bits of data. In fact, to correct a one-bit error in 64

bits of data, only 7 additional check bits are needed. The 8th ECC bit is a parity bit used

to detect double-bit errors. When accessing DRAM with a granularity of 64 bytes and

in an aligned manner, each 64B data has 8 parity check bits. This paper increases the

check granularity of parity from 64 data bits to 256 data bits, so double-bit errors can

still be detected. This saves 6 additional bits that can be used to save address bits and

dirty flag metadata.

Figure 5.17 shows the improvement in DRAM load scheduling throughput com-

pared to using only PCIe. Under uniform workloads, the caching effect of DRAM can

be ignored because its size is only 6
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Figure 5.17 DMA throughput under load distribution (fixed load distribution ratio at 0.5).
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5.4.5 Vector Operation Decoder

The entire key-value processor design views batch processing as a general princi-

ple. This includes batch fetching multiple hash slots in a bucket, batch synchronization

of idle slab queues with host memory, lazy slab splitting and merging, and reservation

stations batch processing dependent key-value operations along the linked list. Batch

processing improves performance by spreading control plane overhead across multiple

effective data plane payloads.

Compared to PCIe, the network is a more scarce resource, with lower bandwidth

(5 GB / s) and higher latency (2 𝜇s). Ethernet RDMA write packets have 88 bytes of

header and padding overhead, while PCIe TLP packets only have 26 bytes of overhead.

This is why previous FPGA-based key-value stores [226,239] did not saturate PCIe band-

width, despite their hash table design being less efficient thanKV-Direct. To fully utilize

network bandwidth, client batching is required in two aspects: batch processing multi-

ple key-value operations in a single packet, and supporting vector operations for more

compact representation. For this, a decoder is implemented in the key-value engine to

decompress multiple key-value operations from a single RDMA packet. Observing that

many key-values have the same size or repeated values, the key-value format includes

two flag bits to allow copying key and value sizes, or values of previous key-values

in the packet. Fortunately, many important workloads (such as graph traversal, pa-

rameter servers) can be batched for key-value operations. Looking forward, if higher

bandwidth networks can be used, batching will not be necessary.

To evaluate the efficiency of vector operations in KV-Direct, Table 5.3 compares

the throughput of atomic vector increments with two alternatives: (1) If each element

is stored as a different key, the bottleneck is the network transmitting key-value opera-

tions. (2) If the entire vector is stored as a large opaque value, retrieved and processed

by the client, the overhead of sending the vector over the network is also high. In addi-

tion, the two alternatives in Table 5.3 cannot ensure consistency within the vector when

accessed by multiple clients simultaneously. Adding synchronization between clients

would incur further overhead.
Table 5.3 Throughput of vector operations (GB/s).

Vector size (bytes) 64 128 256 512 1024
Vector update (with return) 11.52 11.52 11.52 11.52 11.52
Vector update (no return) 4.37 4.53 4.62 4.66 4.68
Each element a key 2.09 2.09 2.09 2.09 2.09
Retrieve for client processing 0.03 0.06 0.12 0.24 0.46

KV-Direct clients package key-value operations in network packets to reduce
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packet header overhead. Figure 5.18 shows that network batching can increase network

throughput by 4 times, while keeping network latency below 3.5 𝜇s.
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Figure 5.18 Efficiency of network batching.

5.5 System Performance Evaluation

5.5.1 System Implementation

To improve development efficiency, Intel FPGA SDK for OpenCL [57] is used to

synthesize the hardware logic of OpenCL. The key-value processor is implemented with

11,000 lines of OpenCL code, all kernels are fully pipelined, that is, the throughput is

one operation per clock cycle. With a clock frequency of 180 MHz, key-value opera-

tions can be processed at 180M op/s, if the network, DRAM, or PCIe is not a bottleneck.

5.5.2 Testbed and Evaluation Method

This section evaluates KV-Direct on a testbed of 8 servers and 1 Arista DCS-

7060CX-32S switch. Each server is equipped with two 8-core Xeon E5-2650 v2 CPUs

with hyperthreading disabled, forming two NUMA nodes connected by QPI Link. Each

NUMA node is equipped with 8 DIMM 8 GiB Samsung DDR3-1333 ECC RAM, with

a total of 128 GiB of host memory on each server. The programmable network card [213]

is connected to the PCIe root complex of CPU 0, and its 40 Gbps Ethernet port is con-

nected to the switch. The programmable network card has two PCIe Gen3 x8 links in

the bifurcated Gen3 x16 physical connector. The tested server is equipped with a Super-

Micro X9DRG-QF motherboard and a 120 GB SATA SSD running Archlinux (kernel

version 4.11.9-1).

For system benchmarking, the YCSB workload [240] is used. For skewed Zipf

workloads, this paper selects a skewness of 0.99 and refers to it as a long-tail work-

load.
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Before each benchmark, the hash index ratio, inline threshold, and load distribution

ratio are adjusted according to the key-value size, access pattern, and target memory

utilization. Then, random key-value pairs of a given size are generated. The key size

for a given inline key-value size is irrelevant to the performance of KV-Direct, as the

keys are padded to the longest inline key-value size during processing. For testing inline

cases, the key-value size is used as a multiple of the slot size (when the size is ≤ 50, i.e.,

10 slots). For testing non-inline cases, the key-value size used is a power of 2 minus

2 bytes (for metadata). As the final step of preparation, PUT operations are issued to

insert the key-value pairs into the free key-value storage until 50% memory utilization.

Performance under other memory utilizations can be obtained from Figure 5.9.

During the benchmark, a FPGA-based packet generator [156] is used in the same

ToR to generate batches of key-value operations, send them to the key-value server,

receive completions, and measure sustainable throughput and latency. The processing

latency of the packet generator is pre-calibrated by direct loopback and removed from

the latency measurement. The error lines represent the 5𝑡ℎ and 95𝑡ℎ percentiles.

5.5.3 Throughput

Figure 5.19 shows the throughput of KV-Direct under YCSB uniform and long-

tail (skewed Zipf) workloads. Three factors may be bottlenecks for KV-Direct: clock

frequency, network, and PCIe/DRAM. For 5B to 15B key-values inlined in the hash in-

dex, most GETs require one PCIe/DRAM access, while PUTs require two PCIe/DRAM

accesses. These small key-values are common in many systems. In PageRank, the key-

value size of edges is 8B. In sparse logistic regression, the key-value size is typically

8B-16B. For sequencer programs and locks in distributed systems, the key-value size is

8B.
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Figure 5.19 Throughput of KV-Direct under YCSB workloads.
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At the same memory utilization, larger inline key-values have lower through-

put due to a higher probability of hash collisions. Key-values of 62B and larger are

not inlined, so they require additional memory accesses. The long-tail workload has

higher throughput than the uniform workload and can reach the clock frequency range

of 180 Mops under read-intensive workloads, or reach the network throughput of ≥
62B key-value sizes. Under the long-tail workload, the out-of-order execution engine

merges about 15% of operations on the most popular keys, and the on-board DRAM

has about a 60% cache hit rate at a 60% load distribution ratio, which can result in up

to 2x the throughput as a uniform workload. As shown in Table 5.4, the throughput of

the KV-Direct network card is comparable to that of state-of-the-art key-value storage

servers with dozens of CPU cores.

5.5.4 Power Efficiency

Inserting the KV-Direct NIC can add 10.6 W of power to an idle server. When the

KV-Direct server is at peak throughput, the system power is 121.4 watts (measured at

the wall). Compared with the most advanced key-value storage systems in Table 5.4,

the power efficiency of KV-Direct is three times that of other systems, and it is the first

to reach one million key-value operations per watt on a commercial server.

When the KV-Direct NIC is unplugged, the power consumption of the idle server

is 87.0 watts, so the total power consumption of the programmable NIC, PCIe, host

memory, and daemon on the CPU is only 34 watts. The measured power difference

is reasonable because the CPU is almost idle, and the server can run other workloads

while KV-Direct is running (using the same standard for one-sided RDMA, as shown

in parentheses in Table 5.4). In this respect, the power efficiency of KV-Direct is ten

times that of CPU-based systems.

5.5.5 Latency

Figure 5.20 shows the latency of KV-Direct under peak YCSB workload through-

put. Without network batching, the tail latency ranges from 3 to 9 𝜇s, depending on the
key-value size, operation type, and key distribution. Due to the additional memory ac-

cess, PUT has a higher latency than GET. Skewed workloads have lower latency than

uniform ones because they are more likely to be cached in on-board DRAM. Larger

key-values have higher latency due to the additional network and PCIe transfer latency.

Network batching adds less than 1 𝜇s of latency compared to non-batching operations,
but significantly improves throughput, as evaluated in Figure 5.18.
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Figure 5.20 Latency of KV-Direct under peak YCSB workload throughput.

5.5.6 Impact on CPU Performance

KV-Direct aims to bypass the server CPU, using only a portion of host memory

for key-value storage. Therefore, the CPU is still available to run other applications.

When a single NIC KV-Direct is at peak load, the measured impact on other workloads

on the server is minimal. Table 5.5 quantifies the impact of KV-Direct peak through-

put. Except for the sequential throughput of CPU 0 to access its own NUMA memory

(rows marked in bold), the latency and throughput of CPU memory access are mostly

unaffected. This is because the 8 host memory channels can provide higher random ac-

cess throughput than all CPU cores can consume, while the CPU can indeed stress the

sequential throughput of the DRAM channels. The impact of the host daemon process

is minimal when the distribution of key-value sizes is relatively stable, as the garbage

collector is only invoked when the number of available slots for different board sizes is

unbalanced.
Table 5.5 Impact on CPU memory access performance when KV-Direct is at peak
throughput. Measured using Intel Performance Counter Monitor (Intel PCM) V2.11.

KV-Direct Status → Idle Busy

Random Access Latency

CPU0-0 82.2 ns 83.5 ns
CPU0-1 129.3 ns 129.9 ns
CPU1-0 122.3 ns 122.2 ns
CPU1-1 84.2 ns 84.3 ns

Sequential Access Throughput

CPU0-0 60.3 GB/s 55.8 GB/s
CPU0-1 25.7 GB/s 25.6 GB/s
CPU1-0 25.5 GB/s 25.9 GB/s
CPU1-1 60.2 GB/s 60.3 GB/s

Random Access Throughput

32B Read 10.53 GB/s 10.46 GB/s
64B Read 14.41 GB/s 14.42 GB/s
32B Write 9.01 GB/s 9.04 GB/s
64B Write 12.96 GB/s 12.94 GB/s
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5.6 Extensions

5.6.1 CPU-based Scatter-Gather DMA

For 64B DMA operations, PCIe has a 29% TLP header and padding overhead

(§5.2.6), and the DMA engine may not have enough parallelism to saturate the PCIe

Bandwidth-Delay Product (BDP) with small TLPs. The PCIe root complex in the sys-

tem supports larger DMA operations, up to 256 bytes of TLP payload. In this case,

the TLP header and padding overhead is only 9%, and the DMA engine has enough

parallelism (64) to saturate the PCIe link with 27 ongoing DMA reads. To batch DMA

operations on the PCIe link, the CPU can be utilized to perform scatter-gather (Figure

5.21). First, the NIC DMA sends addresses to a request queue in host memory. The

host CPU polls the request queue, performs random memory accesses, places data into

a response queue, and writes anMMIO doorbell to the NIC. Then, the NIC extracts data

from the response queue via DMA.

Figure 5.21 Scatter-gather architecture.

Figure 5.22 shows that, compared to the CPU bypass method, the throughput of

CPU-based scatter-gather DMA is improved by 79%. Besides the CPU overhead, the

main disadvantage of CPU-based scatter-gather is the additional latency. To batch 256

DMA operations per doorbell from the CPU to the NIC, it takes 10 𝜇s to complete. The
total latency for the NIC to access host memory using CPU-based scatter-gather is about

20 𝜇s, nearly 20 times higher than direct DMA.

5.6.2 Single-Host Multi-NIC

The primary use case of KV-Direct is to enable remote direct key-value access

without CPU overhead on the server. In some cases, it may be necessary to build a ded-

icated key-value store with maximum throughput per server. Through simulation, [31]
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Figure 5.22 Scatter-gather performance.

showed the possibility of achieving one billion key-value operations on a single server

with four (currently unavailable) 60-core CPUs. As shown in Table 5.4, with 10 KV-

Direct NICs on the server, it is easy to achieve one billion key-value op/s performance

using a commercial server.

As shown in Figure 5.23, the server consumes 357 watts of power (measured at

the wall) to achieve 1.22 Gop/s GET or 0.61 Gop/s PUT performance.

Figure 5.23 10-card KV-Direct system achieving 1.22 billion key-value operations per second
at 357 watts power consumption.

To saturate the 80 PCIe Gen3 lanes of two Xeon E5 CPUs, the motherboard of the

benchmark server was replaced with a SuperMicro X9DRX+-F motherboard with 10

PCIe Gen3 x8 slots, the PCIe topology is shown in Figure 5.24.

Each of the 10 programmable network cards on each slot is connected using a PCIe

x16 to x8 converter, with only one PCIe Gen3 x8 link enabled on each network card,

so the throughput of each network card is lower than that shown in Figure 5.19. Each

network card has an exclusive memory area in the host memory and provides disjoint
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Figure 5.24 PCIe topology of the 10-card KV-Direct system.

key partitions. Multiple network cards encounter the same load imbalance problem

as multi-core key-value storage implementations. Fortunately, for a small number of

partitions (such as 10), load imbalance is not important [30-31] . Under the YCSB long-

tail workload, the average load of the network card with the highest load is 1.5 times,

and the load increase of very popular keys is provided by the out-of-order execution

engine (§5.4.3). In contrast, to achieve performance matching with 240 CPU cores, the

load of the hottest CPU core will be 10 times the average. Figure 5.25 shows that the

throughput of KV-Direct is almost linearly related to the number of network cards on

the server.
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Figure 5.25 Performance scalability of multiple network cards on a single machine.

5.6.3 SSD-based Durable Storage

Data will be lost after power failure in memory-based data structure storage. For

persistence, this section implements persistent key-value storage using SATA SSD.

Since the number of SSDs on the server is limited, and the operating system and ap-

plications also run on the SSD, the key-value storage needs to share the SSD hardware

with the operating system and applications. For this, the SSD provides two access in-

terfaces: block storage and key-value storage. Similar to the dedicated memory space

used by memory key-value storage, key-value storage is also located in a dedicated

block storage space. The CPU needs two ways to access block storage: one is to access
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the block device through the operating system’s storage protocol stack, and the other

is to bypass the operating system and directly access it through the user-mode fast in-

terface. Since the operating system itself and many software run on block storage, it

is necessary to maintain the compatibility of the first traditional access method. Stor-

age performance-sensitive applications use the runtime library provided in this paper to

access block storage through the second method.

Figure 5.26 SSD persistent storage architecture.

As shown in Figure 5.26, the programmable network card virtualizes the SSD into

two virtual AHCI HBA devices. The scheduler inside the programmable network card

virtualizes the data plane of the storage hardware (such as the 32 request slots of SATA

and the request queue of NVMe) into two logical storage devices. The control registers

of the storage hardware (such as PCIe configuration registers) are transparently passed

to the main logical storage device and managed by the original operating system. The

secondary logical storage device has no control plane, only a data plane, and can only

perform data read and write operations, and cannot perform management operations.

The above storage virtualization architecture does not require the programmable net-

work card to manage the control plane, simplifying the design of the scheduler; and it

maintains compatibility with the original storage device driver and operating system.

As shown in Figure 5.27, the sequential access throughput of the original operating sys-

tem and software after storage virtualization through the main logical storage device

has not changed significantly. The delay has increased from about 30 𝜇s to about 60
𝜇s, which is the overhead of the programmable network card forwarding. Due to the
increase in latency, the throughput of single-threaded random access (4K block size)

has also decreased. When 64 threads are randomly accessed, because SATA only has

32 request slots, that is, only 32 read and write requests can be performed in parallel,
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the throughput is limited by the average delay of the request.

Figure 5.27 Performance evaluation of SSD virtualization. The left figure is the result of the
original operating system and SSD performance test program after storage virtualization. The
right figure is the performance test result of this SSD without using storage virtualization.

In order to provide an efficient block device access interface, this section uses the

PCIe I/O pipeline of Chapter 4 to allow applications to directly access the programmable

network card through the storage acceleration API, bypassing the operating system and

driver. The storage acceleration API can access any storage block on the SSD, and

it is the responsibility of the application to avoid conflicts with the file system of the

operating system. Usually, the application creates a large file to reserve storage space.

Experiments show that with only a single CPU thread, the storage acceleration API can

fully utilize the sequential read and write throughput of about 2 GB/s on the SSD and the

random read and write throughput of about 50 K times per second with a 4K block size.

The traditional operating system storage protocol stack requires 8 CPU threads to fully

utilize the throughput of random read and write with a 4K block size. In order to provide

persistent key-value storage, the key-value processor is connected to the slave device

of virtual storage, and treats virtual storage as a large piece of memory for reading and

writing. This paper does not optimize for the read and write characteristics of SSD,

which will be future work.

5.6.4 Distributed Key-Value Storage

In distributed key-value storage, we assume that each host is both a client using

key-value storage and can allocate some memory resources as a key-value server. Each

key-value pair needs to be replicated on multiple server nodes to provide high avail-

ability and improve the performance of key-value access. Traditional key-value storage

services simply select servers based on the hash value of the key. However, not every

host accesses each key with the same probability. For example, in graph computing,
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if a host is responsible for processing a vertex, then the probability of accessing the

key-value corresponding to the vertex will be higher than other hosts. At this time, the

key-value pair of the vertex is best stored on the host to take advantage of locality to

accelerate access.

Distributed storage systems need to decide on which hosts each key-value pair

is replicated. Read operations only need to read the nearest replica. Write operations

need to be synchronized to all replicas through the master node. If there are too many

replicas, the master node synchronizing write operations to each replica will become

a bottleneck. To balance the load between the master node and each replica node, the

number of replicas depends on the read-write ratio. Assuming the ratio of read and

write operations is 𝑅, and 𝑅 is much greater than 1 ①. It can be derived that when

the load of the master node is equal to that of the replica node, the number of replicas

is approximately √𝑅. Compared with a single replica, the load of read operations is
reduced by about √𝑅 times; compared with replication to each host, the load of write

operations is reduced by about √𝑅 times.

After deciding on the number of replicas, the next question is to select the most

frequently read hosts for replication. This paper maintains an approximate counter for

read and write times for each key in the programmable network card of the master node
②. Whenwrite operations are synchronized to each replica, themaster node summarizes

the read times of all replicas. The optimal number of replicas can be calculated based

on the ratio of read and write times, and the number of replicas can be increased or

decreased when it differs significantly from the current number of replicas, so that the

replicas are stored on several nodes with the most read times. To prevent the master

node from not being able to respond to a large number of read requests in a timely

manner due to scarce write operations, the replica node can also actively report to the

master node after receiving a large number of read requests.

Another problem is that the access frequency of some keys may be so high that

the throughput of a single machine may become a bottleneck. For example, the serial

number generator in distributed transactions, the access counter of popular network re-

sources, and the lock of shared resources require high-throughput single-key atomic

operations. Recent works such as NetCache [241] , NetChain [242] use programmable

switches as caches to achieve higher single-key read andwrite performance than a single
①In write-intensive workloads, if there is only one master node, not making any replicas is obviously the most

performance optimal. For high availability, it may be necessary to limit the minimum number of replicas.
②The approximate counter is to save storage space. For example, the approximate count is represented by an

11-bit significand and a 5-bit exponent floating point number. Each time you access, the significand is incremented
with a probability of one in the power of 2.
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host, but they are still limited by switch performance.

This paper proposes that with multi-master replication, single-key read and write

performance can scale with the number of hosts and ensure strong consistency. The

mechanism to ensure consistency is the token ring, at any time there is only one node

holding the token processing write operations. The token is passed in order on the ring

formed by each master node and carries the current latest value. The key to the token

ring’s ability to improve single-key performance is that read and write operations and

many atomic operations are associative. For example, multiple write operations can be

reduced to the last write operation; multiple atomic addition and subtraction operations

can be reduced to one atomic addition and subtraction operation; compare and swap

atomic operations are more complex, but multiple operations can also be reduced to a

lookup table of size not exceeding the number of atomic operations. Therefore, when a

node does not hold a token, it records the received operations in the buffer and reduces

these operations. When the token arrives, the node can quickly execute the reduced

operation based on the latest value, and send the updated value with the token to the

next node. After that, the node replays the operations in the buffer and returns the

result of each operation to the client. Theoretical analysis shows that when requests

arrive evenly at each master node, the system’s throughput and average delay increase

linearly with the number of master nodes. The worst delay is the time it takes for the

token ring to turn around. Since the operations in the buffer are reduced, the processing

delay of each node is bounded, and the time for the token ring to turn around is also

bounded. The size of the request buffer required for each master node is equal to the

product of the worst delay and network bandwidth. The overhead of the token ring is

a packet that is constantly passed in the network, even if there are no read and write

requests, the token has to be constantly passed in the network.

The actual key-value storage system has more than one frequently accessed key.

The network overhead of setting a token for each key is too high, so this paper uses

one token to serve all keys. However, waiting for all keys to be processed and then

sending all updated key-value pairs in a concentrated manner will bring higher latency.

Assuming that the keys accessed over a period of time are random, that is, most key-

value operations involve non-repetitive keys. At this time, the size of the key-value

update carried by the token is proportional to the number of key-value operations in the

buffer, and the time to transmit these key-value updates is no longer bounded, so the

request delay will tend to infinity as the load factor approaches 1. For this reason, this

paper pipelines key-value processing and transmission between adjacent master nodes.

162



Chapter 5 Acceleration of KV-Direct Data Structures

The master node organizes the key-value operations in the buffer into a priority queue

sorted by key in ascending order, and the key-value updates are also sent in ascending

order of keys, and the token indicates the end of the key-value update sequence. When

the master node receives the update of key𝐾 , the key-value operations in the buffer that

do not exceed 𝐾 can be processed and sent to the next master node along the token ring.

In this way, multiple master nodes on the token ring can concurrently process different

keys, that is, the master nodes closer to the direction of token passing process smaller

keys. Theoretical analysis shows that when the keys of the requests follow a uniform

distribution and the requests arrive evenly at each master node, the request delay is still

bounded, regardless of the load factor, and is only slightly higher than the delay in the

single-key situation.

5.7 Discussion

5.7.1 Network Interface Card Hardware of Different Capacities

The goal of KV-Direct is to offload significant workloads (key-value access) using

existing data center hardware, rather than designing special hardware to achieve max-

imum key-value storage performance. Programmable network cards usually contain a

limited amount of DRAM for buffering and connection state tracking. Large DRAM is

expensive in terms of chip size and power consumption.

Even if future network cards have faster or larger onboard memory, under long-tail

workloads, the load distribution design of this paper (§5.4.4) still shows higher perfor-

mance than simple partition design. Keys are unified according to the capacity of the

network card and host memory. Table 5.6 shows the optimal load distribution ratio

for long-tail workloads with 1 billion keys, different network card DRAM and PCIe

throughput, and different network card and host memory size ratios. If the network

card has faster DRAM, more load is dispatched to the network card. A load distribution

ratio of 1 indicates that the behavior of the network card memory is exactly the same as

the cache of the host memory. If the network card has larger DRAM, slightly less load

is dispatched to the network card. As shown in Table 5.7, even if the size of the network

card DRAM is only a small part of the host memory, the throughput gain is significant.

The out-of-order execution engine (§5.4.3) can be applied to various applications

that need to hide latency, and this paper hopes that future RDMA network cards can

support more powerful atomic operations.

In a 40 Gbps network, network bandwidth limits the key-value throughput of non-
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Table 5.6 Optimal load distribution ratio for long-tail workloads under different net-
work card DRAM / PCIe throughput (vertical) and network card / host memory size
ratio (horizontal).

1/1024 1/256 1/64 1/16 1/4 1
1/2 0.366 0.358 0.350 0.342 0.335 0.327
1 0.583 0.562 0.543 0.525 0.508 0.492
2 0.830 0.789 0.752 0.718 0.687 0.658
4 1 0.991 0.933 0.881 0.835 0.793
8 1 1 1 0.995 0.937 0.885

Table 5.7 Relative throughput of load dispatch compared to simple partitioning.
Row and column titles are the same as Table 5.6.

1/1024 1/256 1/64 1/16 1/4 1
1/2 1.36 1.39 1.40 1.37 1.19 1.02
1 1.71 1.77 1.81 1.79 1.57 1.01
2 2.40 2.52 2.62 2.62 2.33 1.52
4 3.99 4.02 4.22 4.27 3.83 2.52
8 7.99 7.97 7.87 7.56 6.83 4.52

batch transfers, so this paper uses client batching. With higher network bandwidth,

the batch size can be reduced, thereby reducing latency. In a 200 Gbps network, the

KV-Direct network card can reach 180 Mop/s without batch transfer.

KV-Direct utilizes widely deployed programmable network cards and FPGA

implementation [48,213] . FlexNIC [127,243] is another promising architecture of pro-

grammable network cards with reconfigurable match-action tables (RMT) [107] . Net-

Cache [241] implements key-value caching in programmable switches based on RMT,

showing the potential to build KV-Direct in network cards based on RMT.

5.7.2 Performance Impact on Real-world Applications

When KV-Direct is applied to end-to-end applications, backend computation

shows potential performance improvement. In PageRank [69] , each edge traversal can be

achieved through a single key-value operation, thus KV-Direct supports 1.22G TEPS on

a server with 10 programmable network cards. In contrast, GRAM [97] supports 250M

TEPS per server, constrained by interleaved computation and random memory access.

KV-Direct supports user-defined functions and vector operations (Table 5.2),

which can further optimize PageRank by offloading client computation to hardware.

Similar parameters apply to the parameter server [81] . This paper hopes that future work

can leverage hardware-accelerated key-value storage to improve the performance of

distributed applications.
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5.7.3 Stateful Processing in Programmable Network Cards

The ClickNP architecture of Chapter 4 is more suitable for stateless or simple state

pipeline data packet processing, but it is inadequate for processing based on connection

state or application layer requests. For example, the scheduler and hash table in the

Layer 4 load balancer application are tightly coupled with the application logic, making

it difficult to scale to a large number of concurrent connections, and the code maintain-

ability is not strong. In fact, a lot of time was spent in the development process to solve

deadlock problems.

KV-Direct proposes a new architecture for stateful processing. The fundamental

difference between KV-Direct and traditional general-purpose processor architectures

lies in the separation of control, computation, and memory access. In traditional proces-

sors, computation and memory access share the same instruction stream, so for serial

programs alternating between computation and memory access, the computation and

memory access logic often need to wait for each other, resulting in neither the com-

putation nor memory access throughput being fully utilized. KV-Direct uses separate

control instruction streams, computation instruction streams, and memory access in-

struction streams, and exploits the parallelism between KV operations with an out-of-

order execution engine, allowing computation and memory access to be fully pipelined.

Developers need to divide the request processing process into several stages alternating

between computation and memory access, and abstract the request processing process

into a state machine. The control instruction streammanages the state of the request and

dispatches the next stage task to the computation or memory access components. After

a stage of the task is completed by the computation or memory access components, it

returns to the controller.

Figure 5.28 Application layer architecture based on KV-Direct for programmable network
cards.

The stateful processing architecture based on KV-Direct is shown in Figure 5.28.

Transactions represent dependencies, such as a connection in stateful network process-
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ing, an application layer HTTP request split across multiple packets, or operations on

the same key in key-value storage. Different requests within the same transaction need

to be processed in sequence, while requests in different transactions can be processed

concurrently. To hide latency and maximize concurrent processing capability, the re-

quest scheduler looks up the transaction number corresponding to the request from the

transaction state key-value storage based on KV-Direct, and queues the requests of the

transactions being processed. The data processing pipeline based on ClickNP processes

according to the request data and transaction state, and may query other data structures

(such as memory allocation tables, host virtual address mapping tables, firewall rule ta-

bles, routing tables, etc.) during the processing. If the request processing is completed,

the response data enters the output rearrangement module, rearranges the order of re-

sponses to meet the consistency requirements of transaction processing (for example,

requests from different transactions also need to respond in the order of arrival), and

finally outputs to the network. If the processing of the request still depends on the next

packet or data DMA from the host memory, in order not to block the data processing

pipeline, the request will return to the scheduler, waiting for the dependent operation to

complete before proceeding to the next stage of processing.

The KV-Direct architecture can serve as the basis for many programmable network

card applications, such as the stateful network functions in Chapter 4 (such as Layer 4

load balancers) and the scalable RDMA in Chapter 6.

5.7.4 Extending from Key-Value to Other Data Structures

KV-Direct implements a hash table data structure for key-value mapping. Key-

value storage systems represented by Redis [78] in data centers also support secondary

indexes, ordered key-value sets, message queues, and other data structures. The es-

sential features of these more complex data structures are stateful processing within

programmable network cards (Section 5.7.3).

For message queues, the advantage of FPGA processing is fast centralized coor-

dination. In the producer-consumer model, the message queue needs to distribute the

producer’s messages to each consumer, which is a centralized FIFO abstraction. Due to

the limited single-core processing capability of the CPU, parallel or distributed message

queues often need to sacrifice some consistency ① to improve performance scalability.

However, the clock frequency of FPGA hardware logic is sufficient to handle requests

at 100 Gbps line speed, without sacrificing consistency.
①Consistency refers to the first-come, first-served order feature
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In the message queue based on KV-Direct, messages are stored in a circular linked

list composed of fixed-size buffers. The use of a circular linked list facilitates the al-

location of new fixed-size buffers when space is insufficient, and also facilitates the

recycling of buffers that have been idle for a long time. For the producer-consumer

model, a head pointer is maintained for all producers, and a tail pointer is maintained

for all consumers. For the publisher-subscriber model, a head pointer is maintained for

all publishers, and a tail pointer is maintained for each subscriber, allowing different

subscribers to receive messages at different speeds.

In the secondary index, requests are queued in the request scheduler according

to the primary index, and the metadata matching the primary index of the secondary

index is obtained using the standard KV-Direct method. The metadata is stored in the

transaction status storage as a cache. Then a new request is generated for the secondary

index query, which is queued in the request scheduler according to the merged primary

and secondary index. When processing this request, the correspondingmetadata is taken

from the transaction status storage and a second DMA query is initiated. In addition,

another complexity of the secondary index compared to the single-level index is that

the secondary index may often need to change the size of the hash table when adding or

deleting elements, thus requiring rehashing, during which the operations corresponding

to the primary index need to be suspended and wait. The advantage of using FPGA

to handle secondary indexes is the fine-grained memory access latency hiding, such as

other secondary indexes can operate during the rehashing of a certain secondary index.

5.8 Related Work

Driven by performance, the research and development of distributed key-value

storage systems, an important infrastructure, has received considerable attention. A

large number of distributed key-value storages are based on CPU. To reduce com-

putational costs, Masstree [32] , MemC3 [33] , and libcuckoo [34] optimize locks, caches,

hashes, and memory allocation algorithms, while KV-Direct comes with a new hash ta-

ble and memory management mechanism specifically designed for FPGA to minimize

PCIe traffic. MICA [30] partitions the hash table to each core, thus completely avoiding

synchronization. However, this method introduces core imbalance for skewed work-

loads.

To get rid of the overhead of the operating system kernel, Netmap [13] and

DPDK [206] directly poll network packets from network cards, while mTCP [17] and
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SandStorm [16] use user-mode lightweight network stacks to handle these packets. Key-

value storage systems [27-31] benefit from such high-performance optimization. As an-

other step in this direction, recent works [35,46,46-47,47] leverage the hardware-based net-

work stack of RDMA network cards, using two-sided RDMA as the RPC mechanism

between key-value storage clients and servers to further increase per-core throughput

and reduce latency. Nevertheless, these systems are still CPU-bound (§5.2.5).

A different approach is to utilize one-sided RDMA. Pilaf [219] and FaRM [70] adopt

one-sided RDMA reads for GET operations, with FaRM achieving network-saturating

throughput. Nessie [218] , DrTM [72] , DrTM+R [73] , and FaSST [20] utilize distributed

transactions to implement one-sided RDMA GET and PUT. However, the performance

of PUT operations is inevitably affected by the synchronization overhead of consistency

guarantees, and is limited by RDMA primitives [47] . In addition, the client CPU is in-

volved in key-value processing, limiting the throughput per core to about 10 Mops on

the client side. In contrast, KV-Direct extends RDMA primitives to key-value oper-

ations, ensuring server-side consistency, making key-value storage clients completely

transparent, and achieving high throughput and low latency, even for PUT operations.

As a flexible and customizable hardware, FPGA is now widely deployed at data

center scale [48,213] , and significant improvements have been made for programmabil-

ity [54,156] . Some early works have explored building key-value storage systems on

FPGA. However, some of them only use on-chip data storage (about a few MB of

memory) [244] or on-board DRAM (e.g., 8 GB of memory) [221-222,224] , thus the stor-

age capacity is limited. The work [226] focuses on increasing system capacity rather than

throughput, and uses SSD as a secondary storage for on-boardDRAM. Thework [222,244]

can only store fixed-size key-value pairs, such key-value storage systems can only be

used for some specific applications, and are not general enough. The work [223,239] uses

host DRAM to store hash tables, and the work [245] uses network card DRAM as a cache

for host DRAM, but they do not optimize for network and PCIe DMA bandwidth, re-

sulting in poor performance. KV-Direct makes full use of network card DRAM and

host DRAM, making FPGA-based key-value storage systems general and capable of

large-scale deployment. In addition, careful hardware and software co-design, as well

as optimization for PCIe and network, push the performance of this paper to the physical

limit.

The use of programmable switches supporting P4 [106] to accelerate key-value

storage systems has been a hot research topic in recent years [111] . SwitchKV [246]

uses content-based routing to route requests to backend nodes based on cached keys,
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while NetCache [241] further caches frequently accessed key-values in the switch.

NetChain [242] implements a highly consistent, fault-tolerant key-value store in network

switches.

Secondary indexing in data storage systems, which allows data retrieval using keys

other than the primary key, is an important feature [247-248] . SLIK [248] supports multi-

ple secondary keys in key-value storage systems using the B+ tree algorithm. Explor-

ing how to support secondary indexing to help KV-Direct move towards a general data

storage systemwould be interesting. SwitchKV [246] uses content-based routing to route

requests to backend nodes based on cached keys, while NetCache [241] further caches

key-values in the switch. This load balancing and caching will also benefit the sys-

tem. Eris [229] uses a network sequence generator to implement efficient distributed

transactions, which can bring new life to the one-sided RDMA methods for client syn-

chronization.

5.9 Chapter Summary

This chapter describes the design and evaluation of KV-Direct, a high-performance

in-memory key-value store. In the long history of computer system design, KV-Direct

is another exercise in leveraging reconfigurable hardware to accelerate important work-

loads. KV-Direct is able to achieve exceptional performance by carefully designing

hardware and software to eliminate bottlenecks in the system and achieve performance

close to the physical limits of the underlying hardware.
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Chapter 6 Acceleration of SocksDirect
Communication Primitives

6.1 Introduction

The theme of this chapter is the acceleration of operating system communication

primitives, as shown in Figure 6.1.

Figure 6.1 The theme of this chapter: acceleration of operating system communication prim-
itives, marked with a bold italic line background.

As the last research work introduced in this paper, we have implemented a user-

space socket communication library that is compatible with existing applications, using

shared memory and RDMA as the communication methods between processes on the

same machine and between different hosts, respectively. As a supplement, based on the

ClickNP programming framework and KV-Direct data structure processing service pro-

posed in previous chapters, we have implemented a scalable RDMA connection number

in the programmable network card.

The Socket API is the most widely used communication primitive in modern ap-

plications, typically used for communication between processes, containers, and hosts.

Linux sockets can only achieve latency and throughput that are one to two orders ofmag-

nitude worse than bare hardware (such as shared memory and RDMA). In recent years,

a lot of work has been aimed at improving socket performance. Existing methods either

optimize the kernel network protocol stack [249-251] , move the TCP/IP protocol stack to

user space [16-19,22] , or offload the transport layer to RDMA network cards [43-44] . How-

ever, all these solutions have limitations in terms of compatibility and performance.

Most of them are not fully compatible with Linux sockets in aspects such as process
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Figure 6.2 The position of this chapter in the programmable network card software and
hardware architecture.

fork, event polling, multi-application socket sharing, and intra-host communication.

Some of them [17] have isolation issues, not allowing multiple applications to share a

network card. Despite these efforts to improve performance, there is still a lot of room

for performance improvement. Existing work cannot achieve performance close to bare

RDMA and shared memory because they cannot eliminate important overheads such as

multi-thread synchronization, buffer management, and memory copying. For example,

sockets are shared among multiple threads within a process, so many systems use locks

to avoid race conditions.

Recognizing these limitations, this chapter designs SocksDirect, a user-space

socket system that achieves compatibility, isolation, and high performance simultane-

ously.

• Compatibility. Applications can use SocksDirect as a substitute for Linux sockets

without any modifications. SocksDirect supports both intra-host and inter-host com-

munication, and behaves correctly during process forks and thread creation. If the

remote endpoint does not support SocksDirect, the system will transparently fall back

to standard TCP.

• Isolation. Firstly, SocksDirect maintains isolation between applications and con-

tainers, i.e., no application can listen to or interfere with connections between other

applications, and a malicious program cannot cause erroneous behavior at its connec-

tion endpoint. Secondly, SocksDirect can enforce access control policies to prevent

unauthorized connections.

• High performance. SocksDirect provides high throughput and low latency, compa-

rable to raw RDMA and shared memory, and can achieve performance scaling across

multiple CPU cores.

To achieve high performance, SocksDirect fully utilizes the capabilities of modern
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hardware. It uses RDMA for inter-host communication and shared memory for intra-

host communication. However, converting socket operations into RDMA and shared

memory operations is not straightforward. Simple solutions may violate compatibility

or leave a lot of performance on the table. For example, after a socket send() returns,

the application may overwrite the buffer. However, RDMA send operations require

write-protecting the buffer. Existing work [43] either provides a zero-copy API that is

incompatible with unmodified applications, or requires the protocol stack to manage

internal buffers and copy data from the buffer.

To achieve all three goals simultaneously, it is first necessary to understand how

Linux sockets provide compatibility and isolation. Linux sockets provide a Virtual File

System (VFS) abstraction to applications. Through this abstraction, application devel-

opers can communicate like operating files without delving into the details of network

protocols. This abstraction also provides good isolation between applications sharing

address and port spaces. However, the VFS abstraction is very complex, and many APIs

are inherently unscalable [17,124-125] .

Despite the universality and complexity of VFS, many commonly used socket op-

erations are actually quite simple. Therefore, the design principle of this chapter is to

optimize for common cases while maintaining compatibility.

To accelerate data transmission while maintaining isolation in connection man-

agement, SocksDirect separates the control and data planes [12] . In each host, a monitor

daemon is introduced as the control plane to enforce access control policies, manage

address and port resources, dispatch new connections, and establish transport channels

between communication endpoints. The data plane is handled by a dynamically loaded

user-space library libsd, which intercepts function calls to the standard Linux C library.

libsd implements the socket API in user space and forwards non-socket related APIs to

the kernel. Applications can take advantage of libsd by loading the library using the

LD_PRELOAD environment variable in Linux.

In SocksDirect, data transmission and event polling are handled directly between

peer processes, while connection establishment is delegated to themonitor. This chapter

utilizes various techniques to efficiently use hardware and improve system efficiency.

Typically, socket connections are shared between threads and processes created by fork.

To avoid race conditions when accessing socket metadata and buffers, synchronization

is needed. By using a token-based sharing method instead of locking for each operation,

SocksDirect eliminates synchronization overhead in common cases. When sending and

receiving data from the network card, existing systems allocate buffers for each packet.

172



Chapter 6 Acceleration of SocksDirect Communication Primitives

To eliminate buffer management overhead, this chapter designs a ring buffer exclusive

to each connection, with a copy at both the sender and receiver, and then synchro-

nizes from the sender’s ring buffer to the receiver’s using RDMA and shared memory.

To achieve zero-copy for larger messages, SocksDirect remaps pages using the virtual

memory mechanism.

The design of SocksDirect presents numerous challenges. (1) How can a socket

be shared among threads and forked processes without locking? (2) How can it scale to

accommodate many concurrent connections? (3) How can shared memory and RDMA

be utilized efficiently for intra- and inter-host communication?

In both multi-thread and multi-process scenarios, a connection may be shared by

multiple senders and receivers. Existing approaches require locking to protect shared

queue andmetadata. To avoid the overhead of locking, we treat each thread as a separate

process. libsd uses thread-specific storage and creates peer-to-peer queues between

each pair of communicating threads. To preserve FIFO semantics, we optimize for the

common case while preparing for the worst case, and take special care on fork and

thread creation.

To efficiently handle many concurrent connections, we need to save memory foot-

print and improve spatial locality. For each pair of threads, SocksDirect multiplexes

socket connections through onemessage queue. Instead ofmaintaining a separate buffer

for each connection and an event notification queue, we receive events and data from the

message queue directly. Observing the event-driven behavior of applications, in normal

case the data in queue is fetched by the application in send order. We design carefully to

enable fetching from the middle of queue and solve the head-of-line blocking problem.

We leverage different transports to push performance to the limits of underlying

hardware. For inter-process and inter-container sockets within a same host, we use

shared memory in user space. For sockets among hosts in an RDMA enabled data

center, SocksDirect can transparently determine whether the remote endpoint supports

SocksDirect. we fall back to kernel TCP socket. We design different queue structures

for shared memory and RDMA. We use batched one-sided RDMA write and amortize

polling overhead with shared CQ. To remove memory copy for large messages, we

use page remapping to achieve transparent zero copy. To share a CPU core efficiently

among multiple active threads, SocksDirect uses cooperative multitasking to remove

thread wakeup overhead.

SocksDirect achieves latency and throughput close to the performance of underly-

ing shared memory queues and bare RDMA. In terms of latency, SocksDirect achieves
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0.3 microseconds RTT for intra-host sockets, which is 1/35 of Linux, and only 0.05

microseconds higher than bare-metal shared memory queues. For inter-host sockets,

SocksDirect achieves 1.7 microseconds RTT between RDMA hosts, almost the same as

bare RDMA writes, and 1/17 of Linux. In terms of throughput, a single thread can send

23 M intra-host messages per second (20 times of Linux) or 18 M inter-host (15 times

of Linux, 1.4 times of bare RDMA writes). For large messages, through zero-copy, a

single connection can saturate the bandwidth of a 100 Gbps network card. The above

performance can be linearly scaled with the number of cores. SocksDirect provides sig-

nificant acceleration for actual applications. For example, the HTTP request latency of

Nginx [252] is reduced to 1/5.5, and the latency of the standard RPC library can also be

reduced by 50

In summary, this chapter makes the following contributions:

• Analyzes the overhead of Linux sockets.

• Designs and implements SocksDirect, a high-performance user-space socket system

that is compatible with Linux and can maintain isolation between applications.

• Supports technologies such as fork, lock-free connection sharing, ring buffer, and

zero-copy, which may be useful in many scenarios beyond sockets.

• Evaluations show that SocksDirect can achieve performance comparable to RDMA

and shared memory queues.

We evaluate the end-to-end performance of SocksDirect using two categories of

applications: network functions and web services. For a multi-core pipelined network

function (NF) chain, a socket application achieves comparable performancewith a state-

of-the-art NF framework [253] . We also evaluate SocksDirect on a standard web appli-

cation composed of a load balancer, a web service, and a key-value store. For an HTTP

request that involves multi-round-trip key-value store accesses, SocksDirect reduces

end-to-end latency by two-thirds.

6.2 Background

6.2.1 Introduction to Linux Sockets

Sockets are the standard communication primitives among applications, contain-

ers, and hosts. Figure 6.3 illustrates the pseudocode of a typical server application using

socket primitives. First, the server creates a socket file descriptor lfd for listening to

ports, receiving new connections, and sets it to non-blocking for asynchronous process-
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ing. Then it creates an event file descriptor efd for receiving new connection events and

events of data transmission on each connection.

Next, it enters the event loop. For each received event, if it is a new connection, it

calls accept to accept it and adds it to event monitoring. If data arrives on an existing
connection, it receives all data on that connection (because of the size limit of the receive

buffer, a single recv may not receive all data). If the peer is ready to receive (i.e., the

receive buffer has free space), it sends out the data to be sent.

The translation of your document is as follows:

1 i n t l f d = socket ( . . . ) ; // l i s t e n f i l e d e s c r i p t o r ( fd )
2 bind ( l fd , listen_addr_and_port , . . . ) ;
3 l i s t e n ( l fd , BACKLOG) ;
4 f c n t l ( l f d , F_SETFL, f c n t l ( l f d ,F_GETFL, 0 ) | O_NONBLOCK) ;
5 i n t e fd = epo l l_c r ea t e (MAXEVENTS) ; // event fd
6 e p o l l _ c t l ( efd , EPOLL_CTL_ADD, l fd , . . . ) ;
7 whi le ( t rue ) { // main event loop
8 i n t n = epol l_wait ( efd , events , MAXEVENTS, 0) ;
9 f o r ( i n t i =0; i<n ; i++) { // i t e r a t e events
10 i f ( events [ i ] . data . fd == l f d ) { // new connect ion
11 i n t c fd = accept ( s fd , . . . ) ; // connect ion fd
12 e p o l l _ c t l ( efd , EPOLL_CTL_ADD, cfd , . . . ) ;
13 f c n t l ( cfd ,F_SETFL, f c n t l ( cfd ,F_GETFL, 0 ) |O_NONBLOCK) ;
14 }
15 e l s e i f ( events [ i ] . events & EPOLLIN) {// ready to recv
16 do { // f e t c h a l l r e c e i v e d data
17 cnt = recv ( events [ i ] . data . fd , recvbuf , bu f l en ) ;
18 recvbuf = next_recv_buf ( ) ;
19 } whi l e ( cnt > 0) ;
20 // do p ro c e s s i ng
21 }
22 e l s e i f ( events [ i ] . events & EPOLLOUT) {// ready to send
23 do { // f l u s h send buf
24 cnt = send ( events [ i ] . data . fd , sendbuf , send len ) ;
25 sendbuf += cnt ; send len -= cnt ;
26 } whi l e ( cnt > 0 && sendlen > 0) ;
27 }
28 }
29 }

Figure 6.3 Pseudocode of a typical socket server application, illustrating the most crucial
socket operations. Socket connections are identified by the integerFD (file descriptor), a FIFO
byte stream channel. Linux employs a readiness-driven I/O multiplexing model, where the
operating system informs the application which file descriptors are ready to receive or send,
and then the application can prepare the buffer and execute socket operations.

TCP sockets in contemporary operating systems typically serve three functions:

(1) addressing, locating, and connecting to another application; (2) providing a reliable

and ordered communication channel, identified by the integer file descriptor; (3) polling

events from multiple channels, such as poll and epoll. Most Linux applications utilize
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a readiness-driven I/O multiplexing model, that is, the operating system informs the

application which file descriptors are ready to receive or send, and then the application

can prepare the buffer and initiate receive or send operations.

6.2.2 Overhead in Linux Sockets

Modern data center networks have microsecond latency and tens of Gbps through-

put. However, traditional Linux sockets are implemented in the operating system ker-

nel space with shared data structures, making sockets a well-known bottleneck for

communication-intensive applications running onmultiple hosts [6] . In addition to inter-

host communication, microservices and containers on the same host often communicate

with each other, making intra-host socket communication increasingly important in the

cloud era. Under stress testing, applications such as Nginx [254] , Memcached [205] and

Redis [255] consume 50% to 90% of CPU time in the kernel, mainly for handling TCP

socket operations [17] .

Conceptually, the Linux network protocol stack consists of three layers. First,

the VFS layer provides the socket API (such as connect, send and epoll) to applica-

tions. Socket connections are bidirectional, reliable, and ordered pipelines, identified

by the integer file descriptor. Second, the traditional TCP/IP transport layer provides

I/O multiplexing, congestion control, packet loss recovery, routing, and Quality of Ser-

vice (QoS) functions. Third, the network card layer communicates with network card

hardware (or virtual loopback interface for intra-host sockets) to send and receive pack-

ets. It is well known that the VFS layer contributes a large part of the cost in the net-

work protocol stack [124-125] . This can be verified by a simple experiment: the latency

and throughput of a Linux TCP socket between two processes in a host are only slightly

worse than those of a pipe, FIFO, and Unix domain socket. (In Table 6.2, the Linux

TCP latency is 11 𝜇s, throughput is 0.9 M op/s, and the latency of pipe, FIFO, and Unix

domain socket is 8 9 𝜇s, throughput is 0.9 1.2 M op/s.) Pipes, FIFOs, and Unix do-

main sockets bypass the transport and network card layers, but their performance is still

unsatisfactory.

The seminal work of Clark et al. [124] categorized socket overhead into per-packet

and per-byte costs. In contemporary protocol stacks, due to the substantial cost of

connection establishment [17,249] , we propose a new type of cost: per-connection cost.

Given that each socket operation incurs a certain cost at the VFS layer, irrespective of

the number of packets it manages (some operations, such as dup2, do not manage pack-
ets at all), we introduce another new type of cost: per-operation cost. Subsequently, we
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Table 6.1 Overhead of Linux sockets.

Type Overhead Solution in this chapter
Per operation Kernel crossing (system call) User-space library (§6.3)
Per operation Socket file descriptor lock for concur-

rent threads and processes
Token-based socket sharing (§6.4.1)

Per packet Transport layer protocol (TCP/IP) Using RDMA or shared memory
(§6.4.2)

Per packet Buffer management New ring buffer design (§6.4.2)
Per packet I/O multiplexing Using RDMA or shared memory

(§6.4.2)
Per packet Interrupt handling Event notification (§6.4.4)
Per packet Process wakeup Event notification (§6.4.4)
Per byte Data copying Page remapping (§6.4.3)
Per connection Kernel file descriptor allocation File descriptor remapping table

(§6.4.5)
Per connection TCB lock management Dispatch to libsd (§6.4.5)
Per connection Dispatch new connection Daemon process (§6.4.5)

will classify socket overhead into four types: per operation, per packet, per byte, and

per connection.

1. Overhead per operation

Kernel crossing. Traditionally, the socket API is implemented in the kernel, so a kernel

crossing (i.e., system call) is required for each socket operation. Worse, to prevent

Meltdown [256] attacks, the Kernel Page Table Isolation (KPTI) patch [257] makes kernel

crossing 4 times more expensive, as shown in Table 6.2 (before the KPTI patch, kernel

crossing required 50 ns, and after KPTI, it required 200 ns). The goal of this chapter is

to bypass the kernel without compromising security (§6.3).

Socket file descriptor lock. Many applications are multithreaded for two reasons.

First, unlike FreeBSD, the asynchronous interface for reading and writing disk files in

Linux cannot take advantage of operating system cache and buffer, so applications con-

tinue to use multithreading and synchronous interfaces [258] . Second, many web appli-

cation frameworks prefer to handle each user request with a synchronous programming

model because it is easier to write and debug [6] . Multiple threads in a process share

socket connections. In addition, after a process forks, the parent process and child pro-

cess share existing sockets. Sockets can also be passed to another process through Unix

domain sockets. To protect concurrent operations, the Linux kernel acquires a lock for

each socket operation [125,249-250] . Table 6.2 shows that even without multicore con-

tention, the latency of a shared memory queue protected by atomic operations is up to 4

times that of a lock-free queue, and the throughput is only 22The goal of this chapter is to

minimize synchronization overhead as much as possible by optimizing common cases
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and removing synchronization operations from common socket operations (§6.4.1).

Intra-host communication. Most existing approaches for intra-host socket either use

kernel network stack or network card loopback. The kernel network stack has evolved

to become quite complicated over the years [251] , which is an overkill for intra-host

communication.

Arrakis uses the network card to forward packets from one application to another.

As shown in Table 6.2, the hairpin latency from CPU to network card is still 25x higher

than inter-core cache migration delay (∼30 ns). The throughput is also limited by

Memory-Mapped I/O (MMIO) doorbell latency and PCIe bandwidth [135,259] .

We aim to leverage user-space shared memory for intra-host socket communica-

tion.

The main challenge for leveraging RDMA for inter-host socket communication

is to bridge the semantics of socket and RDMA [70] . For example, RDMA preserves

messages boundaries while TCP does not. For I/O multiplexing, RDMA provides a

completion notification model while event polling in Linux socket requires a readiness

model [250] . Further, one-sided and two-sided RDMA verbs have different efficiency

and overheads [46,260] .

We aim to use RDMA efficiently for inter-host socket communication, while

falling back to TCP transparently in case of non-RDMA peers.

Many concurrent connections. Internet facing applications often need to serve mil-

lions of concurrent connections efficiently [11,17,249] . Moreover, it is also common for

two backend applications to create a large number of connections between them, where

each connection handles a concurrent task [170,261-262] . In Linux, a socket connection

has dedicated send and receive buffers, each is at least one page (4 KB) in size [263] .

With millions of concurrent connections, the socket buffers can consume gigabytes of

memory, most of which is empty. Random accesses to a large number of buffers also

cause CPU cache misses and TLB misses. Similar issue exists in RDMA network cards

with limited on-chip memory for caching connection states [260,264] .

The translation of your text is as follows:

We aim to minimize memory cache misses per data transmission by multiplexing

socket connections.

2. Overhead per packet

Transport Protocol (TCP / IP). Traditionally, TCP/IP has been the de facto standard

for data center transport protocols. The processing of TCP/IP protocol, congestion con-
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Table 6.2 Round-trip latency and single-core throughput operations (test platform
settings in §6.5.1). Unless otherwise specified, the message size is 8 bytes.

Operation Latency Throughput
(𝜇s) (M operations per second)

Inter-core cache migration 0.03 50
Polling 32 empty queues 0.04 24
System call (before KPTI) 0.05 21
Spinlock (no contention) 0.10 10
Allocation and release of buffer 0.13 7.7
Spinlock (with contention) 0.20 5
Lock-free shared memory queue 0.25 27
Intra-host SocksDirect 0.30 22
System call (after KPTI) 0.20 5.0
Copying 1 memory page (4 KiB) 0.40 5.0
Cooperative context switch 0.52 2.0
Mapping a memory page (4 KiB) 0.78 1.3
Intra-host communication via network card 0.95 1.0
Atomic shared memory queue 1.0 6.1
Mapping 32 memory pages (128 KiB) 1.2 0.8
Opening a socket file descriptor 1.6 0.6
Unilateral RDMA write operation 1.6 13
Bilateral RDMA send / receive operation 1.6 8
Inter-host SocksDirect 1.7 8
Process awakening 2.8∼5.5 0.2∼0.4
Linux pipe / FIFO 8 1.2
Unix domain sockets in Linux 9 0.9
Inter-host Linux TCP sockets 11 0.9
Copying 32 memory pages (128 KiB) 13 0.08
Inter-host Linux TCP sockets 30 0.3

trol, and packet loss recovery consume CPU on every sent and received packet. Further-

more, packet loss detection, rate-based congestion control, and the TCP state machine

employ timers, making it challenging to achieve microsecond granularity and low over-

head [17] . Fortunately, in recent years, we have seen large-scale deployment of RDMA

in many data centers [41,265-266] . RDMA offloads the transport protocol to the RDMA

network card, providing a hardware-based transport layer equivalent to TCP/IP. For

inter-host sockets, the aim of this chapter is to leverage the high throughput, low la-

tency, and near-zero CPU overhead of the RDMA hardware transport layer (§1). For

intra-host sockets, the aim of this chapter is to completely bypass the transport layer.

Buffer Management. Traditionally, the CPU sends and receives packets from the net-

work card through a ring buffer. The ring buffer comprises a fixed number of fixed-

length metadata entries. Each entry points to a buffer that stores the packet payload.

To send or receive a packet, it is necessary to allocate and release buffers. Table 6.2

shows the cost of the ring buffer. Additionally, to ensure that packets of MTU size

can be received, each receive buffer should be at least the size of an MTU. However,
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many packets are smaller than the MTU [267] , so internal fragmentation reduces mem-

ory utilization. Although modern network cards support LSO and LRO [268] to batch

process multiple packets, the aim of this chapter is to completely eliminate the overhead

of buffer management (§6.4.2).

I/O Multiplexing. For traditional network cards, packets from different connections

are usually mixed in a ring buffer, so the network protocol stack needs to classify the

packets into the corresponding socket buffers. Modern network cards support packet

steering [112] , which can map specific connections to dedicated ring buffers used by

high-performance socket systems [17,22,249] . This chapter utilizes similar functionality

in RDMA network cards to demultiplex received packets into ring buffers dedicated to

each connection.

Interrupt Handling. The Linux network protocol stack is divided into system call and

interrupt contexts because it handles events from both applications and hardware de-

vices. For instance, when an application calls send, the network protocol stack sends

the packet in the process context (if the window allows). When the network card re-

ceives the packet, it sends an interrupt to the CPU, and then the network protocol stack

processes the received packet in the interrupt context. The ACK clocking mechanism

in TCP congestion control [264] requires timely handling of interrupts and timers. The

interrupt context is not necessarily on the same core as the application, leading to a

decrease in CPU core locality. However, RDMA network card hardware implements

packet processing that requires precise timing, so the host CPU no longer needs to han-

dle most of the data plane interrupts.

Process Awakening. When a process calls a remote procedure call (RPC) and waits

for a reply, should the CPU switch to other ready-to-run processes? The answer in

Linux is yes, and this process switching wake-sleep process takes 3 to 5 𝜇s, as shown in
Table 6.2. Within the round-trip time of RPC within the host, two process awakenings

contribute more than half of the latency. For host-to-host RPC via RDMA, the round-

trip latency of small messages smaller than the MTU size on the network is even lower

than the process awakening latency. For this reason, many distributed systems and

user-space protocol stacks use polling to avoid awakening overhead. However, simple

polling methods consume a CPU core for each thread and cannot scale to a large number

of threads. To hide microsecond-level RPC latency [6] , cooperative context switching

through sched_yield is much faster than process awakening. The goal of this chapter

is to efficiently share cores among multiple threads (§6.4.4).
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Container Networking. Many container deployments use isolated network names-

paces, and these containers communicate through a virtual overlay network. In Linux,

a virtual switch [172] forwards packets between the host network card and the virtual

network card in the container. This architecture incurs overhead from multiple con-

text switches and memory copies on each packet, and the virtual switch becomes a

bottleneck [269] . Slim [270] reduces three kernel round trips to one. Several recent

works [25,121,271-272] delegate all operations to a virtual switch running as a daemon,

thus increasing latency and CPU cost on the data path. The solution in this chapter is a

centralized control plane and a distributed data plane (§6.4.5).

3. Per-byte Overhead

Payload Copying. In most socket systems, the semantics of send and recv result in

memory copying between the application and the network protocol stack. For non-

blocking send, the system needs to copy data out of the buffer because the application

may overwrite the buffer immediately after send returns. Simply eliminating the copy

may violate the correctness of the application. Zero-copy recv is even more challenging
than send. Linux provides a readiness-based event model, i.e., the application knows
about incoming data (e.g., through epoll) and then calls recv, so data received by the
network card but not delivered to the application must be stored in the system buffer.

Because recv allows the application to provide any buffer as the data target, the system
needs to copy data from the system to the application buffer. The goal of this chapter

is to implement zero-copy for larger payload transfers in standard socket applications

(§6.4.3).

4. Per-connection Overhead

Kernel File Descriptor Allocation. In Linux, each socket connection is a file in VFS,

thus requiring the allocation of integer file descriptors and inode. The challenge with

user-space sockets is that manyAPIs (such as open, close, and epoll) support both socket

and non-socket file descriptors (such as files and devices), so socket file descriptors

must be distinguished from other file descriptors. Linux-compatible sockets in user

space [22,43] typically open a file in the kernel to obtain a virtual file descriptor for each

socket, so they still require kernel file descriptor allocation. LOS [25] divides the file

descriptor space into user and kernel parts, but violates the Linux property of allocating

the smallest available file descriptor. However, many applications, such as Redis [78]

and Memcached [26] , rely on this property. The goal of this chapter is to bypass kernel

socket file descriptor allocation while maintaining compatibility (§6.4.5).
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Optimization of Kernel Network Protocol Stack: The first type of work is the op-

timization of the kernel TCP/IP protocol stack. FastSocket [249] , Affinity-Accept [273] ,

FlexSC [274] , and zero-copy sockets [275-277] achieve good compatibility and isolation.

MegaPipe [250] and StackMap [251] propose new APIs to implement zero-copy and

improved I/O multiplexing, at the cost of requiring modifications to the application.

However, a significant amount of kernel overhead still exists. The challenge of sup-

porting zero-copy is socket semantics.

User-space TCP/IP Protocol Stack: The second type of work completely bypasses

the kernel TCP/IP protocol stack and implements TCP/IP in user-space. In this category,

IX [11] and Arrakis [12] are new operating system architectures that use virtualization to

ensure security and isolation. IX uses LwIP [278] to implement TCP/IP in user-space,

while using the kernel to forward each packet to achieve performance isolation andQoS.

In contrast, Arrakis offloads QoS to the network card, thus bypassing the kernel on the

data plane. These works use the network card to forward packets between applications

on the same host. As shown in Table 6.2, the round-trip (hairpin) latency from the CPU

to the network card is much higher than the cache migration latency between cores. The

throughput is also limited by the doorbell latency of memory-mapped I/O (MMIO) and

PCIe bandwidth [135,259] .

In addition to these new operating system architectures, many user-space sock-

ets on Linux use high-performance packet I/O frameworks, such as Netmap [13] , Intel

DPDK [14] , and PF_RING [15] , to directly access network card queues in user-space.

SandStorm [16] , mTCP [17] , Seastar [18] , and F-Stack [19] propose new APIs, thus requir-

ing modifications to the application. Most API changes aim to support zero-copy, while

the standard API still copies data. FaSST [20] and eRPC [21] provide an RPCAPI instead

of sockets. LibVMA [22] , OpenOnload [23] , DBL [24] , LOS [25] , and TAS [279] comply

with the standard socket API.

The user-space TCP/IP protocol stack offers superior performance compared to

Linux, but it still falls short when compared to RDMAand sharedmemory. A significant

reason for this is that existing works do not support the sharing of sockets between

threads and processes, which results in compatibility issues in fork and container hot

migration, as well as overhead from multi-threaded locks.

Firstly, in LibVMA and RSocket, after a process forks, for sockets created by the

parent process before the fork, the child process either takes ownership of all existing

sockets or cannot access any sockets (i.e., these sockets still belong to the parent pro-

cess). There is no way to independently control the ownership of each socket. However,
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many web services [252,280-283] and key-value stores [26] have a master process to accept

new connections from the listening socket, then it may fork a child process to handle

requests, and the child process needs to access the socket of the new connection. At

the same time, the parent process still needs to accept new connections through the lis-

tening socket. This makes such web services unable to work properly. A more tricky

situation is that the parent process and the child process can simultaneously write to the

log server through the existing socket.

Secondly, multi-threading is common in applications. Applications bear the risk of

race conditions in socket operations, or must adopt socket file descriptor locks for each

operation. The latter method ensures correctness, but even without contention between

locks, locks can impair performance.

Offloading the Transport Layer to the Network Card: To reduce the overhead of op-

erating system communication primitives, a series of works offload part of the socket

system to the network card hardware. The TCP Offload Engine (TOE) [39] offloads part

or all of the TCP/IP protocol stack to the network card, but due to the rapid growth

of general processor performance according to Moore’s Law, these dedicated hardware

have limited performance advantages and only achieve success in dedicated fields, such

as iSCSI HBA storage cards [284] and stateless offloads (such as checksum, Receive Side

Scaling (RSS), Large Send Offload (LSO), Large Receive Offload (LRO) [268] ). In re-

cent years, due to hardware trends and application demands in data centers, the story of

stateful offloads has begun to revive [40] . Therefore, RDMA [35] is widely used in pro-

duction data centers [41] . RDMA provides two types of abstractions: one-sided prim-

itives for reading and writing remote shared memory, and two-sided primitives with

socket-like send-receive semantics. Compared with the software-based TCP/IP net-

work protocol stack, RDMA uses hardware offloading to provide ultra-low latency and

near-zero CPU overhead. To enable socket applications to use RDMA, RSocket [43] ,

SDP [44] , and UNH EXS [45] convert socket operations into two-sided RDMA primi-

tives. They have similar designs, with RSocket being the most actively developed and

the de facto standard for socket-to-RDMA conversion. FreeFlow [272] uses RDMA net-

work cards to provide container overlay networks, using shared memory for intra-host

communication and RDMA for inter-host communication. To implement RDMA vir-

tualization, FreeFlow is essentially a microkernel architecture, with control plane and

data plane operations handled by a user-space virtual switch. FreeFlow uses RSocket

to convert sockets to RDMA.

However, due to the mismatch between RDMA and socket abstractions, these
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works have limitations. In terms of compatibility, first, they lack support for several

important APIs, such as epoll, thus they are incompatible with many applications, in-

cluding Nginx, Memcached, Redis, etc. This is because RDMA only provides transport

functionality, while epoll is a file abstraction integrated with OS event notification. Sec-

ond, RDMA QP does not support fork and container hot migration [272] , hence RSocket

has the same problem. Third, since RSocket uses RDMA as the network packet format,

it cannot connect to regular TCP/IP peers. This is a deployment challenge, as all hosts

and applications in a distributed system must switch to RSocket simultaneously. The

goal of this chapter is to transparently detect whether the remote end supports Rsocket,

and if not, fall back to TCP/IP. In terms of performance, they cannot eliminate pay-

load copy, socket file descriptor lock, buffer management, process wake-up, and per-

connection overhead. For example, RSocket allocates buffers and copies payloads at

both the sender and receiver. Similar to Arrakis, RSocket uses the network card for

intra-host communication, leading to performance bottlenecks.

6.3 Architecture Overview

To simplify deployment and development [149] , and to eliminate kernel crossing

overhead, this chapter implements SocksDirect in user space rather than in the kernel.

To use SocksDirect, the application loads the user-space library libsd by setting the

LD_PRELOAD environment variable. libsd intercepts all Linux APIs related to file

descriptor operations in the standard C library (glibc), implementing socket functional-

ity in user space. From a security perspective, because libsd resides in the application

address space, its behavior is untrusted. For example, a malicious program might di-

rectly write arbitrary messages into the RDMA QP, bypassing the security checks in

the libsd library. In addition, as shown in Table 6.3, although most socket operations

can be implemented between the caller’s local or both ends of the connection, many

socket operations require centralized coordination. For example, the TCP port number

is a global resource that needs to be centrally allocated [249,272] . Therefore, a trusted

component outside of libsd is needed to enforce access control and manage global re-

sources.

For this purpose, amonitor daemon (hereinafter referred to asmonitor) is designed

on each host to coordinate control plane operations, such as connection creation. To en-

sure isolation, we treat all applications and monitors as a distributed system that does

not share data structures, using message communication as the only communication
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Initialization Connection Management

API Category API Category

socket Local connect NoPart
bind NoPart accept(4) P2P
listen NoPart fcntl, ioctl Local
socketpair Local (get,set)sockopt Local
getsockname Local close, shutdown P2P
malloc Local getpeername Local
realloc Local dup(2) P2P
epoll_create Local epoll_ctl Local

Data Transfer Process Management

API Category API Category

recv(from,(m)msg) P2P pthread_create NoPart
write(v) P2P clone NoPart
read(v) P2P execve NoPart
memcpy Local exit P2P
(p)select P2P sleep P2P
(p)poll P2P daemon P2P
epoll_(p)wait P2P sigaction Local

Table 6.3 Main Linux APIs related to sockets and intercepted by libsd. Categories
include Local, Peer-to-Peer (P2P), and Non-partitionable (NoPart). Italic APIs indi-
cate other uses of the operating system besides sockets. Bold APIs are called more
frequently than other APIs, and therefore are more worth optimizing.

mechanism. On each host, all applications loaded with libsd must establish a shared

memory (shared memory) queue with the host’s monitor, thus forming a control plane.

On the data plane, applications build end-to-end (peer-to-peer) queues for direct com-

munication, thereby alleviating the burden of the monitor daemon. The monitor is a

single-threaded user-mode program that polls messages from the end-to-end queues of

all applications. Figure 6.4 shows the architecture of SocksDirect.
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Figure 6.4 The architecture of SocksDirect. Hosts 1 and 2 have RDMA capabilities, while
Host 3 does not.

To achieve low latency and high throughput, SocksDirect uses shared memory
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for intra-host communication and RDMA for inter-host communication. Each socket

connection is mapped to a shared memory queue or RDMA QP. The shared memory

or RDMA QP is marked by a unique token, so other non-privileged processes cannot

access it. Socket send operations are converted into shared memory or RDMA write

operations on the socket buffer at the remote endpoint.

For intra-host communication, the initiator first sends a request to the local moni-

tor, and then the monitor establishes a shared memory queue between the two applica-

tions (possibly in different containers). After this, the two applications can communi-

cate directly.

For inter-host communication, the monitors of both hosts are involved. When

an application connects to a remote host, its local monitor establishes a regular TCP

connection and detects whether the remote host supports SocksDirect and RDMA. If

both are supported, an RDMA queue is established between the two monitors, so that

future socket connections between the two hosts can be created faster. The monitor at

the remote end schedules the connection with the target and helps the two applications

establish an RDMA queue, as between Hosts 1 and 2 in Figure 6.4. If the remote host

does not support SocksDirect, it will continue to use the TCP connection, as between

Hosts 1 and 3 in Figure 6.4. The detailed connectionmanagement protocol is introduced

in Section 6.4.5.

To ensure thread safety and avoid locks, as well as support fork and container hot

migration, this chapter optimizes for the common case where only one pair of send and

receive threads are active, while ensuring correctness in all cases (Section 6.4.1). To

eliminate buffer management overhead, a ring buffer is designed, where each inter-host

message only requires one RDMAwrite operation, and each intra-host message requires

one cache migration (Section 6.4.2). This chapter further designs a zero-copy mecha-

nism that can eliminate data copying of larger messages at the sending and receiving

ends (Section 6.4.3). Finally, Section 6.4.4 provides an event notification mechanism.

As shown in Figure 6.5, the libsd runtime library consists of four layers: API en-

capsulation, Virtual File System (VFS), queue, and transmission. The API encapsula-

tion layer uses a file descriptor remapping table to distinguish between socket file de-

scriptors and kernel file descriptors (such as files and devices), implements socket func-

tions in user space, and forwards other system calls to the kernel through the standard C

library (glibc). The Virtual File System layer implements functions such as connection

creation and closure, event polling and notification, multi-process shared sockets, fork,

container migration, etc., and is the most complex layer. Next to the Virtual File System
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is the signal layer, which is responsible for receiving events from the operating system

and communicating with the monitor and the other end. The next layer is the lock-free

queue based on the ring buffer. The bottom layer is the transmission layer, implemented

with Shared Memory (SHM) or RDMA.

Queueing layer

VFS layer

RDMASHM

Transport layer

glibc

API wrapper

Kernel

Signal

Application thread Epoll
thread

Figure 6.5 The architecture of libsd runtime library.

6.4 System Design

6.4.1 Token-based Socket Sharing

Most socket systems maintain a lock for each file descriptor to enable socket shar-

ing among threads and processes. Previous work [125,285] has shown that many socket

operations are not commutative and synchronization cannot always be avoided. This

chapter takes advantage of the fact that sharedmemorymessage passing ismuch cheaper

than locks [271] , and uses message passing as the only synchronization mechanism.

Logically, a socket consists of two FIFO queues in opposite transmission direc-

tions, each with multiple concurrent senders and receivers. The system design goal is

to maximize general case performance while maintaining FIFO semantics. This pa-

per observes the following two characteristics of applications: first, high-performance

applications rarely fork and create threads due to high costs. Second, it is not com-

mon for several processes to concurrently send or receive from a shared socket, as the

byte stream semantics of sockets make it difficult to avoid receiving partial messages.

Applications that need to send or receive simultaneously usually use a message bro-

ker [77,286-287] instead of directly sharing sockets. The common case of inter-process

socket sharing is that applications implicitly migrate sockets from one process to an-

other, such as offloading transactions from the main process to a worker process.

The solution in this chapter is that each socket queue (a transmission direction of

a socket) has a send token and a receive token. Each token is held by an active thread,
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which has the authority to send or receive. Therefore, at any point in time, there is only

one active sender thread and one active receiver thread. The socket queue is shared

between threads and processes, allowing concurrent lock-free access from a sender and

a receiver (details will be discussed in section 6.4.2). When another thread wants to

send or receive, it should request to take over the token.

S1
3,4

FD

3

4

5
S2
5

Sender Receiver

R1
3

R2
4,5

Monitor
3: S1→R1, 4: S1→R2, 5: S2→R2

Socket Queues

Figure 6.6 Two sender threads and two receiver threads share a token-based socket. The
dashed arrows represent the active sender and receiver for each socket. Each thread tracks
its active sockets and communicates with the monitor through an exclusive queue.

Detailed information for each type of operation is as follows: a) data transmission

(send and recv), b) adding new senders and receivers (fork and thread creation), c)

container hot migration, and d) connection closure.

1. Send/Receive Operations

When a thread does not have a send token but wants to send through a socket, the

non-active thread needs to take over the token. If a direct communication channel is

created between the non-active thread and the active thread, it requires point-to-point

queues, the number of which is the square of the number of threads, or a shared queue

with locks. To avoid these two overheads, a monitor is used as a proxy during the

takeover process. Since takeover is an infrequent operation, the monitor generally does

not become a bottleneck. This message passing design also has the following advan-

tages: the sender process can be located on different hosts, which is very useful in

container hot migration.

The takeover process is as follows: the non-active sender sends a takeover com-

mand to the monitor through the shared memory queue. The monitor polls messages

from various shared memory queues, adds the sender to the waiting list, and proxies the

command to the current active sender. When the active sender receives the request, it

sends the send token to the monitor. The monitor grants the token to the first non-active

sender in the waiting list and updates the active sender. The non-active sender can send

after receiving the token. This mechanism is deadlock-free because at least one sender
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or monitor holds the send token. It is also starvation-free because each sender can ap-

pear in the waiting list at most once and is served in FIFO order. The takeover process

on the receiver side is similar.

The takeover process requires 0.6 microseconds, so if multiple processes send con-

currently through the same socket, the total throughput may drop to 1.6 M operations

per second. However, if we simply use locks, the throughput in the usual case will drop

to 5 M operations per second, far lower than the 27 M operations per second throughput

that can be achieved by token-based socket sharing.

2. Fork, Exec and Thread Creation

Socket data sharing. The main challenge is to share socket metadata, buffers,

and the underlying transport layer after fork and exec. After fork, the memory space
becomes copy-on-write and is erased after exec, but the socket file descriptor still needs

to be available. SocksDirect uses shared memory to store socket metadata and buffers,

so the data is still shared after fork. To attach shared memory after exec, libsd connects

to the monitor to get the shared memory key of its parent process. After fork, because

the parent process cannot see the sockets created by the child process, the child process

creates a new shared memory to store the metadata and buffers of the new socket.

Next, consider the underlying transport layer mechanism. The shared memory-

based transport layer does not require special handling, as the shared memory created

before fork / exec is still shared after fork / exec. However, there are problems with

RDMA after fork / exec, because the DMAmemory area is not in shared memory. They

become copy-on-write after fork, and the network card still DMAs from the original

physical page, so the child process cannot use the existing RDMA resources. After

exec, the entire RDMA context will be cleared. The solution in this chapter is to let the

child process reinitialize the RDMA resources (PD, MR, etc.) after fork / exec. When

the child process uses a socket created before fork, it asks the monitor to re-establish

the RDMA QP with the remote endpoint. Therefore, the peer process may see two or

more QPs of a socket, but they link to the only copy of the socket metadata and buffer.

In the next section (§6.4.2), we will see that we only use the RDMA one-sided write

primitive, so using any QP is equivalent. Figure 6.7 shows an example of fork.

File descriptor space sharing. Unlike socket data, the file descriptor space be-

comes copy-on-write after fork: file descriptors created before fork are shared, but new

file descriptors are exclusive to the creating process. Therefore, just keep the file de-

scriptor remapping table in heap memory, taking advantage of the operating system’s

copy-on-write mechanism after fork. To restore the file descriptor remapping table af-
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Parent process

Child process

FD Table
5 (COW)

FD Table
5 (COW)

Shared pages
FD Table
3
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SHM (shared)
Socket Data
3
4
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RDMA QP
3
5

RDMA QP
3 (on demand)

5

SHM (shared)
SHM Queue
4

SHM (private)
Socket Data
5

Figure 6.7 Memory layout after fork. File descriptors 3 and 4 were created before fork and
are therefore shared. After fork, the parent process and the child process each create a new
file descriptor 5, which is copied on write in the file descriptor table. The socket metadata
and buffers of file descriptors 3 and 4 are in shared memory and are therefore shared. The
child process creates a new shared memory to store the socket metadata and buffers of file
descriptor 5, which will be shared with the child process when it forks again. RDMA QP is in
private memory, while the shared memory queue is shared.

ter exec, it is copied to shared memory before exec and copied back to the new process

during libsd initialization.

Security. Security is an issue because a malicious process may masquerade as a

child process of a privileged parent process. To identify parent-child relationships in the

monitor, when an application calls fork, clone, or pthread_create, libsd first generates
a key for pairing and sends it to the monitor, then calls the original function in libc.

After fork, the child process creates a new shared memory queue for the monitor and

sends the key (the child process inherits the parent memory space, thus knowing the

key). Therefore, the monitor can pair the child process with the parent process.

Monitor operations. During fork, exec, or thread creation, the monitor needs to

add the new process to the sender and receiver lists of each existing socket to manage

takeover operations.

3. Container Live Migration

Migrating Remaining Data in Socket Queue. Since libsd runs in the same

process as the application, its memory state will be migrated to the new host along with

the application. The memory state includes the socket queue, so data in transit (sent but

not received) will not be lost. Sockets can only be shared within a container, and all

processes in the container are migrated together, so the memory on the original host can

be deallocated after migration.

Migration of Monitor State. Themonitor tracks information about listening sock-

ets, active threads, and the waiting list for each connection as well as shared memory

190



Chapter 6 Acceleration of SocksDirect Communication Primitives

keys. During migration, the old monitor dumps the state of the migrated container and

sends them to the new monitor.

Establishing New Communication Channels. After migration, all communi-

cation channels are obsolete, because shared memory is local on the host, and RDMA

does not support live migration [270,272] . First, the migrated container on the new host

needs to establish a connection with the local monitor. The local monitor instructs the

following process. A host-internal connection between two containers may become

host-external, so libsd creates an RDMA connection in this case. A host-external con-

nection between two containers may become host-internal, libsd creates a shared mem-

ory connection. Finally, libsd re-establishes the remaining host-external RDMA and

host-internal shared memory connections.

6.4.2 Ring Buffer Based on RDMA and Shared Memory

tailhead

(a) Traditional ring buffer.
tail

head

send_next

(b) Ring buffer of SocksDirect.

Figure 6.8 Ring buffer data structure. The shaded part is metadata, and the black part is
the valid payload.

Traditionally, the network protocol stack uses a ring buffer to send and receive

packets from the network card. As shown in Figure 6.8a, the traditional ring buffer

consists of a set of fixed-lengthmetadata, each of which points to a fixed-lengthmemory

page to store the valid payload. This design leads to memory allocation overhead and

internal fragmentation. The reason why traditional network cards use this design is that

the number of ring buffers is limited, and multiple connections need to reuse a ring

buffer. This design can move the metadata of the valid payload to the metadata queue

of each connection without copying the content of the valid payload. Fortunately, the

one-sided RDMA write operation (write verb) opens up new design possibilities. The

innovation of this chapter is that each socket connection has its own dedicated ring

buffer and stores packets back-to-back, as shown in Figure 6.8b. The sender determines

the offset in the ring buffer (i.e., the tail pointer), and then uses a one-sided RDMA

write operation to write the packet into the position pointed to by the tail pointer in
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the remote memory. During the transmission process, the receiving end CPU does not

need to do anything. When the receiving end application calls the recv operation, the

data is dequeued from the position of the ring buffer pointed to by the head pointer.

When the head pointer moves to coincide with the tail, the metadata pointed to by the

pointer is empty, so the receiving end’s libsd library can detect that the queue is empty. It

should be noted that the head and tail pointers are maintained locally by the receiver and

sender, respectively, so there is no need to synchronize these two pointers. The process

of transmitting data through shared memory is similar, because both shared memory

and RDMA support write operations.

In order to judge whether the ring buffer is full, the sender will keep a queue credit

count, indicating the number of free bytes in the ring buffer. When the sender enqueues

a packet, it will consume credits equal to the size of the enqueued packet. When the

credits are insufficient, the sender will block and wait. When the receiver dequeues the

packet, it will increase the counter locally, and when the counter exceeds half of the

size of the ring buffer, it will write a credit return flag into the memory of the sender.

The sender regains the queue credit when it detects this flag. Please note that the queue

credit mechanism is unrelated to congestion control; the latter is handled by the network

card hardware [265] .

Both the sender and receiver have a copy of the ring buffer. The abovemech-

anism still requires the sender to allocate memory, because the sender needs a buffer to

construct the RDMA message. Secondly, the above mechanism does not support con-

tainer hot migration, because the remaining data in the RDMA queue that has not been

received in time is difficult to migrate. Third, the goal of this chapter is to batch process

small messages to improve throughput. For this purpose, this chapter keeps a copy of

the ring buffer at both the sender and receiver. The sender writes to its local ring buffer

and calls a one-sided RDMA write operation to synchronize the sender’s ring buffer

with the receiver’s. In order to minimize latency on idle links and maximize through-

put on busy links, this paper designs an adaptive batching mechanism. libsd creates an

RDMA reliable connection (RC) queue pair (QP) for each ring buffer and maintains a

counter of RDMA messages. If the counter does not exceed the threshold, an RDMA

message is sent for each socket send operation. Otherwise, the message is not sent

temporarily, but the first unsent message is marked with send_next. After completing

the RDMA write operation, libsd sends a message containing all unsent changes (from

send_next to tail) in Figure 6.8b. For shared memory, since cache coherence hardware

can automatically perform inter-core synchronization, only one ring buffer shared by
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two processes is needed ①.

Consistency between payload and metadata. For shared memory, Intel and

AMD’s x86 processors provide total store ordering [288-289] , whichmeans that each CPU

core observes the write order of other CPU cores to be the same. The 8-byte MOV
instruction is atomic, so writing the packet header is atomic. Since the sender writes the

packet header after the payload, the message read by the receiver is consistent, and no

memory barrier instruction is required.

Because RDMA cannot guarantee the write order of different parts of the mes-

sage [35] , it is indeed necessary to ensure that the message is fully arrived before pro-

cessing the message. Although the write of the message is always sequential in RDMA

network cards using go-back-0 or go-back-N packet recovery [70] , this is not the case for

more advanced network cards with selective retransmission [264? ] . In libsd, the sender

uses the RDMA write with immediate operation to generate a completion event at the

receiver. The receiver polls the RDMA completion queue rather than the ring buffer.

RDMA can ensure the cache consistency of the receiver and guarantee that the comple-

tion event is later than the data written to the libsd ring buffer.

Amortizing polling overhead. When sockets are not frequently used, polling

the ring buffer wastes the receiver’s CPU cycles. This chapter uses two techniques to

amortize the polling overhead. Firstly, for RDMA queues, the RDMA network card

multiplexes event notifications into a single queue. Each thread uses a shared comple-

tion queue for all RDMA QPs, so it only needs to poll one queue instead of all socket

queues.

Secondly, each queue can switch between polling and interrupt modes. The queue

of themonitor is always in pollingmode. The receiver of each queuemaintains a counter

for continuous empty polling. When it exceeds a threshold, the receiver sends amessage

to the sender, notifying that the queue is entering interrupt mode, and stops polling after

a short time. When the sender writes to the queue in interrupt mode, it also notifies the

monitor, and the monitor will notify the receiver to resume polling.

6.4.3 Zero-copy

The main challenge of zero-copy is to maintain the semantics of the socket API.

Fortunately, virtual memory provides an indirect layer, and many related works have

taken advantage of this page remapping technique, which can remap physical pages

from the sender’s virtual address to the receiver’s without copying. Linux zero-copy
①Shared memory is a physical page mapped to the user address space of two processes respectively.
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sockets [277] only support the sender, and they work by setting the data page to copy-on-

write. However, many applications often overwrite the send buffer after calling send, so
the copy-on-write mechanism only delays the copy from the time of calling send to the

time of the first overwrite. To achieve zero-copy reception, 20 years ago, BSD [275] and

Solaris [276] remapped the virtual pages of the application buffer to the physical pages

of the operating system buffer. However, as shown in Table 6.2, on modern CPUs, the

cost of remapping a page is even higher than copying it due to kernel crossing and TLB

refresh overhead. Recently, many high-performance TCP/IP stacks [250-251] and socket-

to-RDMA libraries [43-44] provide standard socket APIs and alternative zero-copy APIs,

but they have not implemented zero-copy for the standard API. In addition, no existing

work supports zero-copy for intra-host sockets.

To enable zero-copy, the network card driver needs to bemodified to expose several

kernel functions related to page remapping. To amortize the cost of page remapping,

libsd only uses zero-copy for send or recv if the payload is at least 16 KiB. Smaller

messages are copied directly.

Memory alignment. Page remapping is only effective when the send and receive

addresses are page-aligned and the transfer includes entire pages. libsd intercepts mal-
loc and realloc functions and allocates 4 KiB aligned addresses for memory allocation

operations larger than 16 KiB, so most buffers will be aligned with page boundaries,

and smaller memory allocations are allocated as before to avoid internal fragmentation.

If the size of the sent message is not a multiple of 4 KiB, the last piece of data that is

not a whole page will be copied during send and recv.
Sometimes, applications need to receive or send data not from the starting address

of the allocated buffer. For example, the data is part of an HTTP request, the memory of

the HTTP request is aligned, but the data is not aligned due to the presence of the HTTP

header. For non-aligned cases, if the application sends directly after receiving without

reading and writing the data itself, SocksDirect can also achieve zero-copy message

transmission. The method of SocksDirect is that for non-aligned receive buffers, no

memory copy is performed by default, but the mapping and offset relationship of the

page is recorded. When the application accesses for the first time, the data copy is

triggered by the page exception; if the application does not access the data, no copy is

needed.

Reduce copy-on-write. When the sender overwrites the buffer after send, the
existing design uses copy-on-write. Copying is necessary because the sender may read

the unwritten part of the page. Since applications almost always reuse the buffer for
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subsequent send operations, copy-on-write is called in most cases, making zero-copy

basically useless for the sender. This paper observes that most applications do not write

to the send buffer byte by byte. Instead, they overwrite the entire page of the send buffer

through recv or memcpy, so there is no need to copy the original data of the page. For
memcpy, libsd calls the kernel to remap new pages and disable copy-on-write, and then

performs the actual copy. For recv, the old page mapping is replaced by the received
page.

Page allocation overhead. The page remapping mechanism requires the kernel

to allocate and release memory pages for each zero-copy send and recv. Page allocation
in the kernel uses a global lock, which is inefficient. Therefore, libsd manages the

available page pool in each process locally. libsd also tracks the source of the received

zero-copy pages. When a page is unmapped, if it comes from another process, libsd

returns the page to the owner through a message.
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Figure 6.9 Process of sending zero-copy pages.

Securely sending page addresses via sharedmemory. For intra-host sockets,

libsd sends physical page addresses in the user-space queue messages, as shown in step

2 of Figure 6.9a. For security, SocksDirect must prevent arbitrary pagemappingwithout

the sender’s permission. To this end, libsd calls the modified network card driver to get

the encrypted physical page address of the send buffer and sends the encrypted address

to the receiver via the shared memory queue. On the receiver side, libsd calls the kernel

to remap the encrypted physical page address to the virtual address of the receive buffer

provided by the application.

Zero-copy under RDMA. libsd initializes a fixed page pool on the receiver and
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sends the physical addresses of the pages to the sender. The page pool is managed by

the sender. On the sender side, libsd pins the virtual to physical page mapping of the

send buffer, then allocates pages from the remote receiver’s page pool to determine

the remote address for RDMA write, as shown in step 2 of Figure 6.9b. On the receiver

side, when recv is called, libsd calls the network card driver to map the pages in the pool
to the virtual address of the application buffer. After the remapped pages are released

(for example, they are overwritten by another recv), libsd returns them to the page pool

manager on the sender side (step 6).

6.4.4 Event Notification

Challenge 1: Multiplexing events between the kernel and libsd. Applications

poll for events from sockets and other kernel file descriptors handled by the Linux ker-

nel. A simple way to poll for kernel events is to call a system call (such as epoll_wait)
each time, which incurs high overhead because event polling is a frequent operation that

is almost called every time send and receive are called. LOS [25] periodically calls the

non-blocking epoll_wait system call with kernel file descriptors, leading to a trade-off

between latency and CPU overhead: if called too frequently, the CPU overhead is high;

if not called frequently enough, the average latency of notifying kernel events to the ap-

plication is high. In contrast, libsd creates an epoll thread in each process, which calls

the epoll_wait system call to poll for kernel events. Whenever the epoll thread receives

a kernel event, the application thread will report this event along with user-space socket

events.

Challenge 2: Interrupting busy processes. The socket takeover mechanism

(Section 1) requires processes to respond to monitor requests. However, processes may

execute application code for a long time without calling libsd, and monitor requests

cannot be responded to. To solve this problem, this chapter designs a signalmechanism

analogous to interrupts in the operating system. After the monitor sends a request, it

first polls the receive queue for a while, and if there is no reply after a timeout, it sends

a Linux signal to wake up the corresponding process.

The signal handler registered by libsd first determines whether the process is exe-

cuting the application or the libsd code. libsd sets and clears flags at the entrance and

exit of the library. If the signal handler finds that the process is in libsd, it does nothing,

and libsd will handle the event before returning control to the application. Otherwise,

the signal handler will immediately process the monitor’s message. Since libsd is de-

signed to be fast and non-blocking (all system calls that may cause blocking are called
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in the epoll thread), the monitor will receive a response quickly after sending the signal.

Challenge 3: Let multiple threads share the core in time. For blocking socket

operations (such as, blocking recv, connect and epoll_wait), libsd first polls the ring

buffer once. If the operation is not completed, libsd calls sched_yield to give up the

CPU and switch to other processes on the same core. As described in Section 6.2.2,

context switching in cooperative multitasking only requires 0.4 𝜇s. However, some

applications may need to wait a long time to receive a socket message, which leads to

frequent wasteful awakenings. For this, libsd counts the consecutive awakenings that

do not process any messages, and puts the process to sleep when it reaches a threshold.

If the number of libsd idling times reaches a certain threshold, it will put itself to sleep.

Before going to sleep, it sends a message to the monitor and all processes (peers) that

communicate directly with it, so that it can be awakened later by a signal.

6.4.5 Connection Management

1. File Descriptor Remapping Table

Socket file descriptors and other file descriptors (such as disk files) share a names-

pace, and Linux always allocates the smallest available file descriptor. To preserve this

semantics without allocating virtual file descriptors in the kernel, libsd intercepts all

Linux APIs related to file descriptors and maintains a file descriptor remapping table to

map each application file descriptor to a user-space socket object or kernel file descrip-

tor. When a file descriptor is closed, libsd puts it into a file descriptor recycling pool.

When allocating a file descriptor, libsd first tries to get a file descriptor from the pool.

If the pool is empty, it allocates a new file descriptor by incrementing the file descriptor

allocation counter. The file descriptor recycling pool and allocation counter are shared

among all threads in a process.

2. Connection Establishment

Figure 6.10 shows the connection establishment process.

Binding Address (bind). After creating a socket, the application calls bind to

allocate an address and port. Since the address and port are globally protected resources,

allocation is coordinated by the monitor. As shown in Figure 6.10, libsd sends the

request to the monitor. To hide the latency of communicating with the monitor, as an

optimization, if the bind request cannot fail (for example, when no port is specified for

the client socket), libsd immediately returns to the application.

Listening Port (listen). When the server application is ready to accept connections

from clients, it calls listen and notifies the monitor. The monitor maintains a list of
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Closed

Listening

listen() connect()

bind()

Wait-Dispatch

Bound

Send BindReq to monitor
Recv BindRes from monitor

Send SYN to monitorSend Listen to monitor

Established

accept()

Setup shm/rdma queue

Receive “Dispatched”   from monitor

Wait-Server
Receive ACK from server

Setup FD mapping

Wait-Client

Receive SYN from monitor

Setup shm/rdma queue and FD 
mapping, send ACK to client

connect()

Figure 6.10 State machine of the connection establishment process in libsd.

listening processes on each address and port to dispatch new connections.

Initiating Connection (connect). The client application calls connect and sends
a SYN command to listen via the shared memory queue. Now, the monitor needs to

dispatch the new connection to the listening application. In Linux, new connection re-

quests are queued in the kernel’s backlog. Each time the server application calls accept,
it accesses the kernel to dequeue from the backlog, which requires synchronization and

increases latency. To solve this problem, SocksDirect maintains a backlog for each lis-

tener thread of each listening socket. The monitor distributes the SYN to the listener

threads in a round-robin manner.

When the listener does not accept new connections, connections dispatched to that

listener may cause starvation. SocksDirect uses a work stealing method. When the

listener calls accept when the backlog is empty, it requests the monitor to steal from
others’ backlogs. To avoid race conditions between the listener and the monitor, the

monitor sends a request to the listener to steal from the backlog.

Establishing Peer-to-Peer Queues. Upon the first communication between the

client and server applications, the server monitor can assist them in establishing a direct

connection. For within the host, the monitor allocates shared memory queues and sends

the shared memory key to the client and server applications. For between hosts, the

client and server monitors establish a new RDMA QP, and send the local and remote

keys to the corresponding applications. To reduce latency, when the SYN command is

dispatched to the backlog of the listener, the monitor establishes a peer-to-peer queue.
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However, if the SYN is stolen by another listener, a new queue needs to be established

between the client and the new listener, as shown in theWait-Server state in Figure 6.10.

Final Steps of Connection Establishment. After the server sets up the peer

queue, as shown on the left side of Figure 6.10, the server application sends an ACK

to the client. The ACK contains the client file descriptor from the SYN request and its

allocated server file descriptor. Similar to a TCP handshake, the server application can

send data to the queue after sending the ACK. When the client receives the ACK, as

shown on the right side of Figure 6.10, it sets up the file descriptor mapping and can

start sending data.

3. Compatibility with Regular TCP/IP Peers

To be compatible with peers that do not support SocksDirect and RDMA, Socks-

Direct needs to transparently detect SocksDirect capabilities and fall back to regular

TCP/IP when the peer does not support it. However, regular Linux sockets do not sup-

port adding special options to TCP SYN and ACK packets. Due to middleboxes and

network reordering, using another port (like LibVMA [22] does) is also unreliable. For

this, libsd first uses a kernel raw socket to directly send SYN and ACK packets with

special options, and if there are no special options, it falls back to kernel TCP/IP sockets.

On the client side, the monitor sends a TCP SYN packet with special options over

the network. If the peer has SocksDirect capabilities, its monitor will receive the special

SYN and know that the client has SocksDirect capabilities. Then, the server responds

with a SYN + ACKwith special options, including credentials for setting up the RDMA

connection, so that the two monitors can communicate via RDMA later. If the client or

server monitor discovers that the peer is a regular TCP/IP host, it will use Linux’s TCP

connection repair feature [290] to create an established TCP connection in the kernel.

Then the monitor sends the kernel file descriptor to the application via a Unix domain

socket, and libsd can use the kernel file descriptor for future socket operations.

A tricky issue is that received packets are delivered to both the raw socket and the

kernel network protocol stack, at which point the kernel will reply with an RST packet

because this connection does not exist in the kernel. To avoid this behavior, the monitor

installs iptables rules to filter out such outbound RST packets.

4. Connection Closure

When an application calls close, libsd removes the file descriptor from the remap-

ping table. However, the socket might still be useful because the file descriptor can be

shared with other processes, and there might be unsent data in the buffer. libsd keeps

track of the reference count for each socket, incrementing it at fork and decrementing it
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at close. To ensure that unsent data has been sent to the peer, a handshake between the

peers is needed during connection closure, similar to TCP close. Because sockets are

bidirectional, close is equivalent to performing shutdown in both the send and receive

directions. As shown in Figure 6.11, when an application closes one direction of a con-

nection, it sends a shutdown message to the peer. The peer responds with a shutdown

message. When libsd has received shutdown messages in both directions, it deletes the

socket.
Established

Send FIN-WR to peer

shutdown(WR) or

Send FIN-RD to peer

shutdown(RD) or
Receive FIN-WR

FIN-Wait-1 FIN-Wait-2

shutdown(WR) or
Receive FIN-RD

Closed

Receive FIN-RD

shutdown(RD) or
Receive FIN-WR

Send FIN-RD to peer Send FIN-WR to peer

Figure 6.11 State machine for connection closure in libsd.

6.5 System Performance Evaluation

SocksDirect is implemented in three components: a user-space library libsd and a

monitoring daemonwith 17K lines of C++ code, as well as a kernel module that supports

zero-copy. This section evaluates SocksDirect from the following aspects:

Efficiently using shared memory for intra-host sockets. For 8-byte messages,

SocksDirect achieves 0.3 𝜇s RTT and a throughput of 23 M messages per second. For

large messages, SocksDirect uses zero-copy to achieve 1/13 of Linux’s latency and 26x

throughput.

Efficiently using RDMA for inter-host sockets. SocksDirect achieves 1.7 𝜇s RTT,
close to raw RDMA performance. When zero-copy, a connection can saturate a

100 Gbps link.

Scalable with the number of cores. As the number of cores increases, the throughput

can almost linearly scale.

Significantly accelerates unmodified end-to-end applications. For example,

SocksDirect reduces the latency of Nginx HTTP requests by 5.5 to 20 times.
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6.5.1 Evaluation Methodology

This section evaluates SocksDirect on a server with two Xeon E5-2698 v3 CPUs,

256 GiB memory, and a Mellanox ConnectX-4 network card. The server is inter-

connected with an Arista 7060CX-32S switch via a 100 Gbps Ethernet interface [291] .

Unlike Chapters 4 and 5, this section only uses the commercial card part of the pro-

grammable network card, and the commercial card has been upgraded to 100 Gbps,

without using FPGA. The server uses Ubuntu 16.04 and Linux 4.15, uses RoCEv2 for

the RDMA protocol, and polls the completion queue every 64 messages. Each thread

is pinned to a CPU core. Sufficient warm-up tests were conducted before collecting

data. For latency, this section reports the average round-trip time of a ping-pong appli-

cation, with error bars representing the 1% and 99% percentiles. For throughput, one

side keeps sending data while the other side keeps receiving data. This section com-

pares Linux, raw RDMA write primitives (write verb), Rsocket [43] , and LibVMA [22] ,

which is a user-space TCP/IP protocol stack optimized for Mellanox network cards.

We also compared SocksDirect without batching and zero-copy, denoted as “SD (un-

opt)”. This section did not evaluate mTCP [17] , because the underlying DPDK library

has limited support for Mellanox ConnectX-4 network cards. Due to batching, mTCP

has much higher latency than RDMA, and the reported throughput is 1.7 M packets per

second [21] .

6.5.2 Performance Microbenchmark

1. Latency and Throughput

Figure 6.12 shows the intra-host socket performance between a pair of sender and

receiver threads. For 8-byte messages, SocksDirect achieves 0.3 𝜇 s round-trip latency

(1/35 of Linux) and 23 M messages per second throughput (20 times of Linux). In

comparison, a simple shared memory queue has 0.25 𝜇 s round-trip latency and 27 M

throughput, indicating that SocksDirect adds very little overhead. RSocket has 6x la-

tency and 1/4 throughput of SocksDirect, because it uses the network card to forward

intra-host packets, which leads to PCIe latency. LibVMA simply uses kernel TCP sock-

ets for intra-host. The one-way latency of SocksDirect is 0.15 𝜇 s, even lower than ker-

nel crossing (0.2 𝜇 s). Kernel-based sockets need to cross the kernel on both the sender

and receiver.

Due to memory copying, for 8 KiB messages, the throughput of SocksDirect is

only 60

Figure 6.13 shows the inter-host socket performance between a pair of threads. For
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Figure 6.12 Single-core message performance of intra-machine communication under dif-
ferent message sizes.

8-byte messages, SocksDirect achieves a throughput of 18M messages per second (15

times that of Linux) and a latency of 1.7 microseconds (1/17 of Linux). The throughput

and latency are close to the original RDMA write operation (as shown by the dashed

line), which does not have socket semantics. Batching does not affect the latency we

evaluate, as RDMA write operations are only delayed when the send queue is full, and

we only use one message to evaluate latency. Due to batching, the throughput of Socks-

Direct for 8-byte messages is even higher than RDMA. The message throughput of non-

batching SocksDirect is between RSocket and RDMA. LibVMA also uses batching to

achieve good performance, but the latency is 7 times that of SocksDirect. For messages

smaller than 8 KiB, the throughput of inter-host RDMA is slightly lower than intra-host

shared memory because the ring buffer structure is shared. For messages from 512B

to 8KiB, and larger messages that do not enable zero-copy, SocksDirect is limited by

packet copying, but it is still faster than RSocket and LibVMA due to reduced buffer

management overhead. For zero-copy messages (≥ 16 KiB), SocksDirect saturates the

network bandwidth, with 3.5 times the throughput of all comparison work and 72
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Figure 6.13 Single-core message performance of cross-host communication under different
message sizes.
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2. Latency Decomposition

Table 6.4 explains why the performance of SocksDirect surpasses other systems.

Each socket operation in Linux requires a kernel traversal, and all systems except Socks-

Direct require locking in thread-safe mode. For each packet, SocksDirect saves buffer

management overhead and offloads the transport layer and packet processing to the net-

work card. To transmit a packet, SocksDirect uses a one-sided RDMA write operation,

requiring only one DMAoperation at the sender and receiver respectively. RSocket uses

two-sided RDMA, and LibVMA uses a similar packet interface, so the receiver needs to

add one DMA operation. LibVMA and RSocket use the network card to forward intra-

machine packets, while SocksDirect uses shared memory. The high latency of Linux is

mainly due to interrupt handling and process awakening. For larger messages, Socks-

Direct eliminates data copying, and the overhead of page remapping is significantly

lower. RSocket performs better than LibVMA and Linux because it pipelines the data

copy operation at the sender, the RDMA send operation, and the data copy operation

at the receiver. The connection establishment latency of SocksDirect mainly comes

from the initial handshake through the Linux raw socket and the creation of RDMA QP

through libibverbs.
3. Multi-core Scalability

SocksDirect has achieved nearly linear scalability for intra-host and inter-host

sockets. For intra-host sockets, SocksDirect provides a throughput of 306 M messages

per second across 16 pairs of sender and receiver cores, which is 40 times that of Linux

and 30 times that of RSocket. LibVMA falls back to Linux for intra-host sockets. Us-

ing RDMA as inter-host sockets, SocksDirect achieves a throughput of 276Mmessages

per second across 16 cores with batching, which is 2.5 times the message throughput of

the RDMA network card used in this chapter, and 8 times the throughput of RSocket.

Without enabling batching, SocksDirect can only achieve a throughput of 62 M, which

is 60

Finally, we evaluate the performance of multiple threads sharing a core. Each

thread has to wait for its turn to process messages. As shown in Figure 6.15, although

the message processing latency almost linearly increases with the number of active pro-

cesses, it is still 1/20 to 1/30 of that of Linux.

6.5.3 Practical Application Performance

This section demonstrates that SocksDirect can significantly improve the perfor-

mance of actual applications without modifying the code. Rsocket [43] is not compatible
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Type Overhead SocksDirect LibVMA RSocket Linux
Per operation Total (thread-unsafe) 53 56 71 413
Per operation Total (thread-safe) 53 177 209 413
Per operation C library wrapper 15 10 10 12
Per operation Kernel crossing (system call) N/A N/A N/A 205
Per operation Socket file descriptor lock N/A 121 138 160
Per packet Total (inter-host) 850 2200 1700 15000
Per packet Total (intra-host) 150 1300 1000 5800
Per packet Buffer management 50 320 370 430
Per packet Transport layer protocol N/A 260 N/A 360
Per packet Packet handling N/A 200 N/A 500
Per packet NIC doorbell and DMA 600 900 900 2100
Per packet NIC handling & wire 200
Per packet Handling NIC interrupt N/A N/A N/A 4000
Per packet Process wakeup N/A N/A N/A 5000
Per kilobyte Total (inter-host) 173 540 239 365
Per kilobyte Total (intra-host) 13 381 212 160
Per kilobyte Line transmission 160
Per connection Total (inter-host) 47000 18000 77000 47000
Per connection Total (intra-host) 700 3800 33000 14700
Per connection Initial TCP handshake 16000 16000 47000 N/A
Per connection Monitor handling 180 N/A N/A N/A
Per connection RDMA QP creation 30000 N/A 30000 N/A

Table 6.4 Latency breakdown of SocksDirect and other systems. The per-operation
latency is measured using fcntl(), the per-packet and per-kilobyte latency is the time
from send() to recv(), and the per-connection latency is the delay of connection cre-
ation. The numbers in the table are in nanoseconds and represent rough estimates.
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Figure 6.14 Throughput of 8-byte messages under different CPU core numbers.
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Figure 6.15 Message processing latency when multiple processes share a CPU core.

with any of the following applications.

1. Nginx HTTP Server

To test the typical web service scenario where the client comes from the network

and provides services within the host, this section uses Nginx [252] v1.10 as a reverse

proxy between the HTTP request generator and the HTTP response generator. Nginx

and the response generator are located in the same host, while the request generator is

located in a different host. The generator communicates with Nginx using keep-alive

TCP connections. Due to fork, LibVMA [22] cannot be used with unmodified Nginx. In

Figure 6.16, the request generator measures the time from sending the HTTP request to

receiving the entire response. For smaller HTTP response sizes, compared with Linux,

SocksDirect can reduce latency by 5.5 times. For large responses, due to zero-copy,

SocksDirect can reduce latency by up to 20 times.
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Figure 6.16 Nginx HTTP request end-to-end latency.

2. Redis Key-Value Store

This section uses the redis-benchmark client and 8-byte GET requests to measure

the latency of the Redis [78] in-memory key-value store server. When using Linux, the

average latency is 38.9 𝜇𝑠, and the 1After using SocksDirect, the average latency is 14.1
𝜇𝑠 (64
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3. Remote Procedure Call (RPC) Library

This section uses RPClib [292] to measure RPC latency. Running example 1 KiB

RPC in two processes within the host with RPClib takes 45 𝜇s. On two hosts, RPC
takes 79 𝜇s. Using SocksDirect, the intra-host latency becomes 21 𝜇𝑠 (a reduction of
53

However, SocksDirect is not a panacea. Even with libsd, the performance of RP-

Clib is still far below that of the most advanced RPC libraries, such as eRPC [21] , due

to the overhead of RPClib becoming a performance bottleneck.

4. Network Function Pipeline

64-byte data packets in pcap format come from an external packet generator, pass

through the Network Function (NF) pipeline, and are sent back to the packet generator.

This section implements each NF as a process, which inputs packets from stdin, up-

dates local counters, and outputs to stdout. For Linux, pipe and TCP socket are used to

connect NF processes within the host. Figure 6.17 shows that the throughput of Socks-

Direct is 15 times and 20 times that of Linux pipe and TCP socket, respectively. It even

approaches the most advanced NF framework, NetBricks [253] .
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Figure 6.17 Throughput of network function pipeline.

6.6 Discussion: Scalability of Connection Numbers

When using commercial RDMA network cards, SocksDirect scalability for a large

number of connections is limited by the underlying transport layer (i.e., shared memory

and RDMA). To demonstrate that libsd and the monitor are not bottlenecks, this sec-

tion creates many connections between two processes that reuse RDMA QP and shared

memory. An application thread using libsd can create 1.4 M new connections per sec-

ond, which is 20 times that of Linux and twice that of mTCP [17] . The monitor can create

5.3 M connections per second.

Since the number of processes within a host is limited, the number of shared mem-

ory connections may not be large. However, a host may connect to many other hosts,
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and the scalability of RDMA becomes a problem. The scalability of RDMA boils down

to two issues. First, RDMA network cards use card memory as a cache to maintain

the state of each connection. When there are thousands of concurrent connections,

performance is affected by frequent cache misses [21,260,264] . Because RDMA is tra-

ditionally deployed in small and medium-sized clusters, the memory capacity on tradi-

tional RDMA network cards is small. With the large-scale deployment of RDMA in re-

cent years [41] , most network card manufacturers have realized this problem. Therefore,

the memory capacity of recent commercial network cards is getting larger and larger,

such as Mellanox ConnectX-5 [? ] , which can store the status of thousands of connec-

tions [21] . The programmable network card used in this paper even has several terabytes

of DRAM [10,137,293] . Therefore, this paper predicts that future data centers will not

worry too much about the problem of network card cache misses. The next section will

propose a scalable transport layer implementation framework based on programmable

network cards. The second issue is that it takes about 30𝜇𝑠 to establish an RDMA con-

nection in the test platform of this paper, which is important for short connections. This

process only involves communication between the local CPU and the network card, so

this connection establishment latency can be optimized.

Quality of Service (QoS) under a large number of concurrent connections is also

an important requirement for data centers. Traditional network protocol stacks imple-

ment quality of service guarantees in the operating system kernel. For the hardware

transport protocol used in this chapter, offloading data plane performance isolation and

congestion control to RDMA network cards is an increasingly popular research direc-

tion [12,264-265,294-295] , because data center network cards are becoming more and more

programmable [10,37,127,137,293] , and public clouds have already provided QoS in net-

work functions outside of virtual machines [156,253,296] .

Scalability of connection numbers requires storing the transport layer and packet

buffer for each connection. For the transport layer state issue, the next two sections

propose two solutions: storing connection states and implementing transport layer pro-

cessing in programmable network cards or user-level libraries on host CPUs. For the

packet buffer issue, the last section proposes multiple socket shared queues, merging

the buffers of multiple connections between two processes.

6.6.1 Transport Layer Based on Programmable Network Cards

This section implements an RDMA network card with scalable number of connec-

tions based on the programmable network card, the network packet processing platform
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in Chapter 6, and the in-memory key-value store in Chapter 5. The main challenge of

implementing scalable connections is to access the connection status in the host mem-

ory at high throughput when the cache miss rate is high, and to hide the access latency.

This is exactly the problem solved in Chapter 5, so this section implements scalable

connection status storage based on high-performance key-value storage.

Figure 6.18 Scalable RDMA based on programmable network card.

The architecture of the RDMA network card based on the programmable network

card is shown in Figure 6.18. The RDMA network card needs to handle control and data

transmission commands (work requests) from the host, and also needs to handle packets

from the network. For control and data transmission commands, the host CPU puts the

work request into the work queue in the host memory, and then sends it to the network

card through PCIe DMA [47] . The packets received through the network interface are

also placed in the input buffer of the network card, corresponding to a work request

in the work queue. The request scheduler retrieves the connection status information

from the connection status key-value store based on the five-tuple information of the

packet or the connection number in the host command, and classifies the work request

and the current connection status into different work queues inside the network card

according to the priority of the connection. Since the processing of RDMA messages

is stateful, there may be dependencies between two adjacent packets processed by the

same connection. For this reason, the request scheduler records the connections being

processed and only schedules work requests for unprocessed connections, which is the

same as the way messages with the same key are processed in the key-value store in

Chapter 5. For received packets, the receive processing unit processes according to the

type of RDMA message. For RDMA one-sided write messages, only need to generate

host DMA operations, write data to the corresponding position in the host memory, and
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reply with an ACK message. For RDMA one-sided read, atomic, and two-sided send

messages, it is necessary to read the corresponding data from the host memory before

the next operation can be performed. In order to hide the DMA latency of reading

from the host memory, after generating the DMA read request for the host memory,

a new work request needs to be generated, waiting for the DMA to complete before

proceeding to the next step. This new work request is sent back to the request scheduler,

and the waiting condition is marked at the same time. When the DMA is completed,

the request scheduler will process this new work request, send data to the network or

DMA the data to the host memory. The processing of the send command is similar

to the processing of the RDMA one-sided read message. The recv command does not

require active processing by the network card, but when a two-sided send or one-sided

write with immediate message is received from the network, it is necessary to match

the corresponding recv work request.

The performance challenge of the above processing flow is that it is difficult to

complete the stateful processing of a work request within a single clock cycle, and the

work requests of the same connection cannot be processed in parallel, thereby reducing

the single-connection throughput. The solution is to pipeline the processing of work

requests, each stage handles different parts of the connection status, so there is no data

dependency between stages. A data forwarding mechanism is set up within each stage

as in Chapter 5, making the state updates that have not been written back to the request

scheduler visible to subsequent work requests. In this way, multiple work requests

with dependencies from the same connection can be processed concurrently at different

stages of the pipeline. For such dependencies that can be resolved through pipelining

and data forwarding, the request scheduler does not need to record the dependencies,

but considers all such requests as unrelated.

6.6.2 CPU-based Transport Layer

Another solution to implement connection scalability is to implement the trans-

port layer protocol on the host CPU, so that the network card does not need to store the

state for each connection, but only needs to implement stateless offloading. A common

scheme for network card stateless offloading is to use the send/receive packet interface

between the user-mode protocol stack and the network card, rather than the RDMA re-

mote memory access interface. The packet-based implementation can handle a large

number of concurrent connections and can be used on virtualization platforms that do

not support RDMA. For example, many virtual machine instances in Microsoft Azure
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cloud do not support RDMA, but support high-performance packet interfaces such as

DPDK and LibVMA. The packet-based transport layer can be used on these virtualiza-

tion platforms.

LibVMA uses a high-performance packet send/receive interface with the network

card. The compatibility, performance, and multi-core scalability issues of LibVMA are

mainly due to its VFS layer. Therefore, this section uses LibVMA to implement trans-

port layer functions and network card interfaces, replacing the ring buffer and RDMA

hardware transport layer in libsd. The structure of the LibVMA [22] user-mode socket

library is similar to the libsd library in Figure 6.5, which is composed of API encapsu-

lation, VFS layer, queue layer, and transport layer. The queue layer and transport layer

of LibVMA are composed of the LwIP lightweight TCP/IP protocol stack and the high-

speed packet send/receive interface of the Mellnox network card. To use LibVMA, the

queue based on the ring buffer in libsd is replaced with the send/receive interface of

LwIP. Tests show that the throughput of the LwIP and network card interface parts in

LibVMA for sending and receiving small packets is 18M times per second; the through-

put of theAPI encapsulation andVFS layer in libsd is 27M times per second. Thismeans

that the throughput of libsd based on LibVMA can reach about 10.8M small packets

per second.

To implement zero-copy based on TCP/IP, the LwIP transport layer in LibVMA

needs to be modified. For page remapping, the payload of sending and receiving needs

to be aligned to the 4 KiB boundary. When sending, libsd assembles a packet composed

of two buffers: first is the packet header assembled from the packet header template

through the LwIP transport layer, and then the zero-copy payload. libsd uses the scatter-

gather support of the network card to let the network card assemble the two buffers into

one packet. When receiving, libsd uses a receive work request containing two buffers,

first is a 54-byte buffer that can just accommodate the standard TCP/IP packet header,

and then the page-aligned payload buffer. As with the design in Section 6.4.2, libsd

replenishes the recvwork request in time after receiving the packet, keeping the network
card always available with the receive buffer.

The above packet interface-based scheme requires the LibVMA library to insert

a flow steering rule for each connection, mapping the received packets to the receive

work queue. This still requires the network card to maintain the state for each con-

nection, so as shown in the evaluation results in Section 6.5, the performance will still

decrease when there are many concurrent connections. In order to make the network

card completely save the connection state, an unreliable, congestion control-free one-
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sided RDMA write operation can be implemented with a programmable network card

(currently Mellanox RDMA network cards do not support one-sided RDMA based on

unreliable datagrams). The one-sided RDMA write operation contains the memory ad-

dress on the remote host, so the receiving network card only needs to write the payload

into the address specified in the packet through PCIe DMA. This way, the ring buffer

design in Section 6.4.2 can be applied, and the sender synchronizes the changes in the

ring buffer to the receiver through the unreliable channel. The packet loss rate of the

RDMA-enabled data center network is very low, so packet loss can be detected by

timeout. Specifically, the receiver sends an acknowledgment (ACK) packet as soon

as it finds data in the ring buffer; if the sender does not receive the acknowledgment

packet after a timeout, it retransmits. To implement window-based congestion control,

the sender needs to maintain a send window for each ring buffer (i.e., each connection),

and adjust the send window when receiving acknowledgment packets and explicit con-

gestion notifications (ECN). The CPU overhead added by transport layer functions such

as packet loss recovery and congestion control is limited. This method can solve the

scalability problem of the network card connection number.

6.6.3 Multiple Sockets Sharing Queue

Many applications establish multiple socket connections between two processes.

For example, multiple client threads and server threads of a database may establish pair-

wise connections. HTTP load balancers often establish a connection for each HTTP re-

quest with backend web services. Some other transport layer protocols (such as SCTP)

and application layer protocols (such as QUIC and many RPC libraries) also provide

multi-connection abstraction. In the traditional design, each connection requires inde-

pendent buffers, so the number of buffers required is relatively large.

To reduce memory usage and improve memory access locality, as shown in Figure

6.19, this paper uses a queue to share all connections between a pair of threads. Each

data element in the queue is identified by its file descriptor. By using a queue, the

memory usage, randommemory access, and cachemisses of each socket can be reduced.

Message format in the queue. Based on the traditional queue structure in Sec-

tion 6.4.2, a file descriptor field is added to the header of each message, indicating the

file descriptor of the receiver. In this way, messages from different file descriptors can

share a queue. A next message pointer field is also added to the header of each message

for the following event polling; a delete bit is added for the following message retrieval

from the middle of the queue.
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Figure 6.19 Comparison of queue structures. Assume that both the sender and receiver have
two threads. First, create peer queues between each pair of sender and receiver threads. In-
stead of using locks to protect the queue, assign each file descriptor to the receiver thread to
ensure ordering. Secondly, data from all connections (file descriptors) is multiplexed through
the shared queue, rather than a queue for each file descriptor.

Event polling. Maintain a bitmap for each epoll file descriptor set. When

epoll_wait is called, scan all data queues in turn, and check the file descriptor of each
data message in the bitmap. If the file descriptor is in the bitmap, return an event to the

application. Maintain a global pointer to resume scanning the data queue from the posi-

tion of the last scan. To avoid scanning the same message multiple times, set a pointer

for each queue to save the position of the last scan. Since the application may repeatedly

perform receive operations on a file descriptor until the queue of the file descriptor is

empty, this paper scans and creates a message linked list for each file descriptor to speed

up repeated receive operations. Each file descriptor maintains two pointers, namely the

first and last messages scanned but not yet received for this file descriptor. When a new

message of the file descriptor is scanned, the next message pointer field in the message

header is updated to point to the newly scanned message, forming a message linked list

of the same file descriptor.

Retrieving messages from the middle of the queue. In order to receive data

from any file descriptor, the queue needs to support taking a message from the mid-

dle. Fortunately, this does not happen often. Event-driven applications usually process

incoming events in a first-come-first-served order. For the level-triggered epoll_wait
operation, libsd scans all messages in the queue and returns those messages whose file

descriptors have been registered in the epoll file descriptor set. Therefore, when the
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application calls recv, the message usually taken is at the head of the queue.
To find a specific file descriptor’s message from the middle of the queue, if the

message linked list of the file descriptor is not empty, the head of the linked list is the

message to be found; if it is empty, it is necessary to traverse the messages in the queue,

from the head pointer of the circular buffer to the unallocated space (marked by the

valid bit). Therefore, when a message is taken from the middle of the queue, its valid

bit cannot be cleared. Therefore, a delete bit is added to each message. When a message

is taken from the middle, the delete bit is set.

Fragmentation consolidation. If the application does not receive data from a cer-

tain file descriptor for a long time, the free space in the queue will become fragmented.

When there is no available space in the circular buffer, there may still be many deleted

messages in it, but because they are located between other messages of file descriptors

that have not been received, the space of these messages cannot be used. When there is

no available space in the circular buffer, the sender notifies the receiver to consolidate

fragments through the control register in shared memory. The receiver scans the avail-

able space in the circular buffer, concentrates the messages that have not been received,

and returns the free space to the sender.

The following evaluates the scalability of the number of connections shared by

multiple sockets. Before the test, a specified number of connections are pre-established

between two processes, and then these connections are used in a round-robin manner

to send and receive data in a ping-pong pattern. Figure 6.20 shows the single-core

throughput under different concurrent connection numbers. SocksDirect can support

100 M concurrent connections with 16 GB of host memory, and the throughput does

not decrease at such a high concurrency. In contrast, the performance of RDMA, Lib-

VMA, and Linux decreases rapidly with the increase of the number of connections. For

RDMA, the performance drops rapidly after exceeding 512 concurrent connections,

which is due to the RDMA transport layer state filling up the network card buffer. Al-

though LibVMA and Linux do not use RDMA as the transport layer, they maintain

buffers for each connection, which leads to CPU cache and TLB misses when there

are thousands of concurrent connections. In addition, LibVMA installs a connection

redirection rule (flow steering rule) for each connection in the network card, which also

causes network card cache misses.
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(b) Cross-host throughput.

Figure 6.20 Single-core throughput under different concurrent connection numbers.

6.7 Limitations

In addition to the performance limitations under high concurrency discussed in

§6.6, this chapter will discuss the limitations of SocksDirect in terms of compatibility

and CPU overhead.

6.7.1 Compatibility Limitations

Transport Layer. SocksDirect offloads the transport layer mechanism to the RDMA

network card. Readers may have some questions about the transport layer mechanism

of the RDMA network card. For example, most commercial network cards rely on

Priority-based Flow Control (PFC) to eliminate packet loss on Ethernet due to conges-

tion. PFC brings many problems, such as head-of-line blocking, congestion spreading,

and even deadlock [41] , making the network difficult to manage and understand. We note

that many works aim to improve the performance of the RDMA transport layer. The

RDMA congestion control algorithms proposed in recent years [264? -266] not only im-

prove throughput and latency, but also reduce the number of PFC pause frames. Many

advanced packet loss recovery mechanisms [294-295] also make RDMA no longer need

PFC on networks with packet loss. Therefore, we expect future RDMA network cards

to provide low-latency and high-throughput transport layers on data center networks

with packet loss.

Priority and Quality of Service Guarantee. When multiple threads share the same

CPU core, SocksDirect uses non-preemptive scheduling. However, to ensure real-time

performance and performance isolation, tasks of different priorities in the data center

are usually scheduled to be processed on different CPU cores. Processes running on the

same CPU core generally handle similar work tasks, and the working processes of exist-

ing software (such as Nginx load balancer, Memcached key-value storage, etc.) usually
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process requests in a first-come-first-served order, without setting process priority.

Compatibility limitations also exist in other user-space protocol stacks. First,

like other user-space protocol stacks, libsd uses LD_PRELOAD to intercept the glibc

API of the application program, and cannot intercept direct system calls, so statically

linked applications cannot be used. Second, the sockets created by SocksDirect are not

visible in the /proc file system, so some network monitoring tools cannot work. Third,
SocksDirect lacks some functions of the kernel protocol stack, such as netfilter and
traffic control. However, modern data center network cards already support QoS and

ACL offloading [112] , so these functions can be offloaded to hardware.

6.7.2 CPU Overhead

SocksDirect eliminates many overheads in existing protocol stacks, but introduces

some new ones.

Monitor polling overhead. The polling of the monitor occupies a CPU core. If

the monitor is implemented in the kernel and accessed through system calls, the polling

overhead will be eliminated, but the overhead of kernel traversal (system calls) and

multi-core synchronization in the kernel will increase. Since most control plane op-

erations do not need to go through the monitor, the per-operation overhead added by

implementing the monitor in the kernel is acceptable, but it can save the fixed overhead

of a CPU core.

Idle process polling overhead. The cooperative non-preemptive scheduling of

libsd has two shortcomings. First, if many processes share a CPU core and the arrival

of events is relatively random, the above polling method will wake up a large number of

processes without pending events, causing an increase in latency. For this, the kernel’s

cooperative scheduling needs to become more ”intelligent”, scheduling processes that

have tasks to do based on incoming requests, without reintroducing the series of over-

heads of the original preemptive scheduling. The core method is to adjust the kernel’s

scheduling queue based on messages. Consider two situations: first, within a single

machine, a dispatch process sends messages to multiple worker processes running on

the same CPU core. This is a common communication pattern, such as a task dispatcher

distributing tasks to different customer network function processes, or a message source

distributing events to multiple subscriber processes. The dispatch process manages the

scheduling order of the worker processes. The operating system kernel organizes the

worker processes running on the same CPU core into a process group, represented by a

bitmap, and maps it to the user space of the dispatch process. After the dispatch process
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writes data to the shared memory queue, it sets the bit corresponding to the worker pro-

cess in the bitmap. Modify the kernel scheduler, no longer schedule all ready processes

in turn, but scan the bitmap and schedule the next set process. In order to prevent other

processes on the same CPU core from starving, the worker process group is treated as

a traditional process that is continuously ready and bound to the CPU core. Since non-

worker processes are usually in a non-ready (blocked) state, they will not waste CPU

time scheduling them.

The second situation is cross-machine communication. At this time, the network

card acts as a central dispatcher, and the supported communication mode is arbitrary,

not limited to a dispatch process and several worker processes. The event queue of the

network card provides the scheduling order of the operating system kernel. The monitor

establishes an event queue for each CPU core, which summarizes the completion queue

events of all RDMA connections of the processes on the CPU core, written by the net-

work card, and read out by the operating system kernel. The kernel schedules processes

according to the order of the event queue, so the scheduled processes are exactly those

with events to process. In addition, programmable network cards can observe the length

of the event queue on each CPU core, so in a situation where an RDMA message can

be distributed to any of the multiple CPU cores, the message can be distributed to the

CPU core with the shortest event queue, achieving better load balancing.

6.8 Future Work

6.8.1 Interface Abstraction between Applications, Protocol Stacks,

and Network Cards

In this chapter, applications communicate with user-level protocol stacks through

socket interfaces, and protocol stacks communicate with network cards through RDMA

interfaces. This is to be compatible with existing applications and RDMA network

cards. However, applications often have higher-level communication abstractions on

the socket layer, such as the key-value storage primitives in Chapter 5, and remote pro-

cedure call (RPC), message queue primitives, etc. With the emergence of programmable

network cards, the boundary between tasks divided between the host CPU and the net-

work card does not necessarily follow the RDMA interface. Therefore, the interface

abstraction between applications, protocol stacks, and network cards can be considered

as a whole.

The interface abstraction between applications, protocol stacks, and network cards
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not only needs to consider performance issues, but also whether it is easy to program.

If only considering from the perspective of performance, for existing network cards

with smaller memory capacity, a better task division is to implement the transport layer

of high-bandwidth and low-latency connections on the network card, and implement

the transport layer of a large number of other connections on the host CPU. However,

this requires developers to specify which connections need high bandwidth and low

latency, which increases the programming burden; or the protocol stack and network

card automatically divide and migrate, which will also increase the complexity of the

system.

If the protocol stack and applications can not follow the socket interface, there

will be a larger design space. Many related works were introduced in Section 6.2 of

this chapter. For example, in terms of zero-copy, if the application can give more hints

to the protocol stack, many unnecessary memory copies can be avoided. When the

application calls send, it may continue to read and write the send buffer. In order to
ensure that the application can read the contents of the buffer, the zero-copy page must

be set to read-only, which requires copy-on-write when the receiver in the same host

modifies the received content in place. When the application writes to the send buffer,

the protocol stack does not knowwhether the unwritten part of the buffer will be read by

the application, so it cannot map an empty page, but needs copy-on-write. This paper

intercepts memcpy to optimize the case of whole page writing, but cannot optimize

the case where the page is partially written. Many applications actually do not need

to read the buffer content after sending. The best solution to the above problems is

for the application to inform the protocol stack whether the content of the buffer to be

sent needs to be read. This can be achieved by adding an option to the send call, or an

additional mem_is_junk API.
The message-based RDMA primitives of the network card and the byte-stream-

based socket primitives are mismatched. The ring buffer between the sender and the

receiver does not need software explicit synchronization in the shared memory of the

CPU. But in the shared memory based on one-sided RDMA, software needs to explic-

itly send RDMA operations to synchronize the two buffers, that is, to synchronize the

sender’s data to the receiver, and to synchronize the buffer space released by the re-

ceiver to the sender. Compared with hardware-implemented coherent shared memory,

software explicit synchronization increases CPU overhead. Implementing ring buffer

synchronization in hardware can achieve higher throughput, especially when messages

are very small.
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The current division of transport layer functions between commercial RDMA net-

work cards and host CPUs is not flexible enough. As discussed in Section 6.6.2, the

one-sided RDMA operations in Mellanox RDMA network cards only support Reliable

Connection (RC) and do not support Unreliable Datagram (UD). This means that if you

want to implement the transport layer on the host CPU, you must use two-sided send
and recv operations or other packet sending and receiving interfaces provided by the

network card, and you cannot use remote memory access primitives. In addition, the

functions in the transport layer such as sequential transmission, congestion control, and

packet retransmission are also tightly coupled. They either use the hardware implemen-

tation fixed by the network card manufacturer, or they are all implemented in software

on the CPU. Programmable network cards provide an opportunity to decouple transport

layer functions.

If the network card has the ability to handle a large number of concurrent connec-

tions, implementing connection establishment in the network card can save the overhead

and delay of the CPU in the process of creating connections.

6.8.2 Modular Network Protocol Stack

The network protocol stack is composed of interface abstraction, congestion con-

trol, packet loss recovery, Quality of Service (QoS), Access Control List (ACL), packet

format, and other components, as shown in Table 6.5.
Table 6.5 Component selection of the network protocol stack

Component Selection
Interface Abstraction RDMA, BSD socket, StackMap, RPC, Message Queue, …
Congestion Control TCP, DCTCP, DCQCN, TIMELY, MP-RDMA, IRN, …
Packet Loss Recovery Go-back-0, Go-back-N, Selective Retransmission, Cut-Payload, …
QoS Strict Priority, RR, WFQ, Multi-Level Feedback Queue, …
ACL netfilter, OpenFlow, P4, …
Packet Format TCP/IP, RDMA, RoCE, RoCEv2, …

The most representative RDMA protocol stack and TCP protocol stack each im-

plement a set of different components. The RoCEv2 protocol stack, which is widely de-

ployed in data centers, is derived from the RDMAprotocol stack, but replaces the packet

format to be compatible with the existing data center network’s addressingmethod based

on IP addresses and port numbers. SocksDirect integrates the components of the two

protocol stacks, using the socket interface abstraction of the TCP protocol stack, but the

rest of the components all use the corresponding components of RDMA. As discussed

in Section 6.7, the RDMA congestion control and packet loss recovery algorithms used

in SocksDirect may have fairness issues with standard TCP, and also lack QoS, ACL,
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and other functions. Therefore, the above components should be modularized and users

should be allowed to flexibly combine them. Each component may be implemented

in the CPU user mode, CPU kernel mode, or programmable network card. A network

protocol stack combination includes the division of tasks between user mode, kernel

mode, and programmable network card, as well as the selection of each component. A

flexible combination of modular protocol stacks can be implemented using a modular

network function programming framework, such as ClickNP in Chapter 4.

As shown in Table 6.6, the interface abstraction of the network protocol stack can

be further divided into multiple components. Different combinations of components

can form different interface abstractions, suitable for different types of applications, and

have different performance characteristics. Many designs of SocksDirect aim to imple-

ment the interface abstraction of Linux sockets, and pay a performance price for imple-

menting some of these abstractions (for example, to ensure message ordering, the con-

nection needs to be implicitly exclusive to a thread; due to user-managed buffers, non-

page-aligned buffers cannot use zero-copy). We look forward to future work proposing

a flexible combination of modular network protocol stack interface abstractions.
Table 6.6 Component selection of network protocol stack interface abstraction

Component Selection
Addressing Method IP Address + Port Number, Infiniband Address, Memory Address,

Node ID Based on Metadata, …
Connection Abstraction Byte Stream, Message Stream, Shared Memory, Connectionless, …
Reliability Guarantee Reliable Order, Tolerate Disorder, Tolerate Packet Loss, Tolerate Er-

rors, …
Connection Sharing Scope Single Thread, Between Threads, Fork Parent-Child Process, All Pro-

cesses within Container, …
Connection Sharing Method Implicit Sharing, Explicit Sharing, Exclusive and Explicit Transfer of

Ownership, …
Message Order in Shared Connection Full Order, Causal Order, No Order, Synchronization Barrier, …
Buffer Management User Management (RDMA), Protocol Stack Management (socket),

User Allocation Protocol Stack Release, Protocol Stack Allocation
User Release, …

Notification Method Blocking, Polling (select), Notify When Ready (epoll), Notify After
Completion (aio), Completion Queue (RDMA CQ), …

6.9 Chapter Summary

SocksDirect is a high-performance user-space socket system compatible with

Linux. To ensure the reliability of the control plane, this paper designs a monitoring

daemon for each host; a point-to-point, synchronization-free data plane that fully sup-

ports fork and multi-threaded socket sharing; and a ring buffer that effectively utilizes

sharedmemory and RDMA. SocksDirect achieves performance close to hardware limits
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and improves the end-to-end performance of actual applications.
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Chapter 7 Conclusion and Future Work

7.1 Summary

Over the past few decades, the evolution of custom hardware has seen its fair share

of highs and lows. A decade ago, the idea of incorporating a custom computing device

into each server within a data center was nothing short of a pipe dream. However,

in recent years, the trend towards large-scale cloud computing, the demands of data

center applications, and the performance limitations of general-purpose processors have

accelerated the development of custom hardware. This has resulted in a significant

improvement in the performance of data center networks.

The advancement of custom hardware and the communication requirements of dis-

tributed systems have led to the widespread deployment of programmable network cards

in data centers. Microsoft uses FPGAs to boost the performance of search engines, vir-

tual networks, compression, machine learning inference, and so on. Amazon and Al-

ibaba Cloud enhance virtual networks, virtual storage, and virtual machine monitors.

Tencent Cloud employs FPGAs, while Huawei Cloud utilizes network processors to

speed up virtual networks. Looking back, network virtualization may have been the

first major application of programmable network cards, but this only scratches the sur-

face of the potential of these devices.

To fully leverage the high performance of data center networks, it is crucial to

minimize the ”data center tax”. This includes not just network virtualization, but also

network functions and operating system communication primitives. This paper pro-

poses the acceleration of network functions using FPGA-based programmable network

cards. To simplify FPGA programming, this paper introduces the first FPGA program-

ming framework suitable for high-speed network packet processing based on high-level

languages. This improves throughput tenfold and reduces latency to a tenth compared

to traditional CPU-based network functions. To decrease the overhead of operating

system communication primitives, this paper suggests a combined software-hardware

user-space socket system. This system is fully compatible with existing applications

and can achieve throughput and latency close to hardware limits. This resolves the

longstanding conflict between the low performance of general protocol stacks and the

poor compatibility of dedicated protocol stacks.

The term ”programmable network card” is derived from network acceleration, but

its influence extends beyond the network and continues to permeate various areas of
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the system. Memory data structure storage is a crucial foundational component of dis-

tributed systems. This paper introduces a remote direct key-value access primitive,

an extension of the remote direct memory access (RDMA) primitive. By bypassing

the server-side CPU and directly accessing the host memory with the programmable

network card, along with a series of performance optimizations, this paper achieves a

throughput ten times that of the CPU key-value storage system and microsecond-level

latency. This makes it the first general-purpose key-value storage system with a single-

machine performance reaching one billion operations per second.

Without a doubt, programmable network cards can enhance system performance

and reduce data center costs. The three systems proposed in this paper establish new per-

formance benchmarks for virtual network functions, general memory key-value storage,

and socket network protocol stacks. However, the aim of this paper is not to break per-

formance records, but to inspire readers to consider: How can we build a programmable

network card ecosystem that includes hardware, development toolchains, and operating

systems? Howwill new hardware, such as programmable network cards, alter the archi-

tecture of data centers and the programming paradigm of distributed systems? As it has

been said, ”The best way to predict the future is to create it”. The story of programmable

network cards is just beginning.

7.2 Future Work

High-performance data center systems based on programmable network cards ne-

cessitate a combined software-hardware ecosystem, primarily composed of hardware,

development toolchains, and operating systems. Section 7.2.1 will discuss the future

hardware architecture of programmable network cards. The development toolchain, in-

cluding programming frameworks, compilers, runtime libraries, debugging tools, etc.,

is vital in software-hardware co-design. Section 7.2.2 will discuss future works in

the development toolchain. The operating system, including virtualization, schedul-

ing, monitoring, high availability, flexible scaling, etc., will be discussed in Section

7.2.3. Finally, as a first-class citizen in the data center, the programmable network card

not only enhances system performance but also prompts us to rethink the overall ar-

chitecture of distributed systems, which may lead to system innovation. This will be

discussed in Section 7.2.4.
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(a) The Catapult programmable network card
used in this paper.

(b) Future system-on-chip.

Figure 7.1 Comparison of programmable network card structures.

7.2.1 Programmable Network Card Based on System-on-Chip

This paper utilizes the Catapult programmable network card depicted in Figure

7.1a. This architecture has three limitations. Firstly, the performance of existing com-

mercial RDMA network cards significantly decreases when the number of concurrent

connections is large [264] . We aim to use the scalable key-value storage technology in

Chapter 5 to implement the RDMA hardware transmission protocol in FPGA reconfig-

urable logic to achieve high performance under high concurrent connection numbers.

This has been discussed in Section 6.6. Secondly, FPGA is only suitable for acceler-

ating the data plane, and the control plane is still left on the host CPU. Although its

computing power is not large, for performance isolation, computing nodes still need

to reserve a small number of CPU cores for control plane processing. Chapter 1 has

pointed out that even reserving a physical CPU core is quite expensive. For this reason,

we hope to add ARMmulti-core processors to the programmable network card to imple-

ment the control plane, thereby completely eliminating the virtualization overhead on

the host CPU. The cost of ARM multi-core processors is tens of dollars, far lower than

the cost of a physical CPU core. Finally, some types of workloads are not very efficient

when implemented in FPGA and should be solidified in ASIC accelerators. The first

type is computationally intensive operations such as vector operations, encryption and

decryption operations in deep learning and machine learning. For example, the RSA

asymmetric encryption based on the Intel QuickAssist accelerator card [142] is about 10

times higher in throughput than the FPGA-based implementation in Chapter 4; the LZ77

compression algorithm based on ASIC is also an order of magnitude higher in through-

put than the FPGA-based implementation in this paper. The power consumption, area,

and process of the used ASIC and FPGA chips are close. The second type is common
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data structures and scheduling queues. The lookup table based on Content-Addressable

Memory (CAM) is a necessary component of many common data structures such as

hash tables, out-of-order execution engines, caches, fuzzy matching tables, etc. CAM

can be implemented with ternary gates in ASIC, but the efficiency of implementation

in FPGA is low [297] . In addition, priority queues (which can be implemented with

shift register sequences or heaps), round-robin scheduling queues, out-of-order execu-

tion schedulers considering dependency relationships, timers, and other structures are

widely used in many applications, so they can learn from the architecture of network

processors, harden these general structures, and let FPGA reconfigurable logic focus on

customized computing and flexible interconnection.

Therefore, this paper anticipates that future programmable network cards will uti-

lize the system-on-chip architecture as depicted in Figure 7.1b. Compared to separate

components interconnected by off-chip buses, the system-on-chip can offer higher band-

width and lower latency for inter-component communication, making it more suitable

for dividing computations into finer granules to more appropriate processing compo-

nents. The FPGA at the heart of the system-on-chip not only provides programmability

and computational capabilities, but also flexibly interconnects and combines various

on-chip computational accelerators, forms customized memory hierarchy, and flexibly

interconnects various hardware devices inside and outside the host to form an intelligent

fabric for data centers.

At present, there are programmable network card architectures based on system-

on-chip in the industry. For instance, Xilinx’s Versal architecture [298-300] integrates

reconfigurable hardware (FPGA), deep learning and traditional machine learning accel-

erators based on Very Long Instruction Word (VLIW), Digital Signal Processors (DSP)

and hard IP, as well as multi-core general processors on a single chip to form a Sys-

tem on Chip. Compared to traditional FPGAs, the most significant difference of the

Versal architecture is that it forms a system-on-chip, which is reflected in three aspects:

Firstly, it hardens the control logic of external interfaces such as memory controllers and

PCIe into digital logic, reducing the area overhead of FPGA and enabling plug-and-play

for FPGA. Secondly, it recognizes the low efficiency of implementing common com-

putations such as vector operations in big data and machine learning on FPGA, and

accelerates them with hardened digital logic. Thirdly, it adds general processors that

can handle complex logic and control planes without having to loop back to the CPU,

enabling the Versal system-on-chip to directly drive Flash storage, etc., to form low-cost

storage servers without traditional components such as x86 CPUs. The components of
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the system-on-chip are interconnected through an on-chip network [300-301] . The Ver-

sal architecture accelerates various applications of data center servers, and developers

can decompose applications into control planes on general processors, data planes on

reconfigurable hardware, and vector computation data planes, using the appropriate ar-

chitecture to handle the corresponding parts of the application.

7.2.2 Development Toolchain

At present, programmable network cards are a burgeoning technology, primarily

propelled by cloud computing manufacturers. However, their ecosystem is still in its

infancy. Firstly, the development toolchain for programmable network cards, includ-

ing compilers, debugging tools, code libraries, and so forth, lacks flexibility and user-

friendliness. Moreover, the support provided by relevant manufacturers is not yet com-

prehensive. Recent high-level synthesis tools are primarily focused on the programma-

bility of FPGA in computation-intensive processing (such as deep learning), with less

emphasis on communication-intensive processing. Although this paper’s ClickNP in

Chapter 4 has made some strides in this direction, it is still a considerable distance from

large-scale commercial applications.

Secondly, in current research, the task division between programmable network

cards and applications is rather arbitrary. There is a need for quantitative research meth-

ods to determine which workloads are suitable for offloading to programmable network

cards. For an existing application to utilize a programmable network card to acceler-

ate its data plane functions, a significant amount of code needs to be rewritten. This

includes not only implementing the data plane processing logic from scratch within

the programmable network card but also modifying the control plane code on the host

CPU to fully exploit the network card’s parallelism and hide processing latency. Fu-

ture development toolchains need to reduce the secondary development cost of existing

applications.

1. PCIe Debugging Tools Based on Programmable Network Cards

Data center servers are increasingly loaded with more PCIe devices, such as GPUs,

NVMeSSDs, network cards, accelerators, and FPGAs, among others. For high through-

put and low latency communication between PCIe devices, technologies like GPU-

Direct, NVMe over Fabrics are gaining popularity. However, many PCIe devices can

only communicate with device drivers on the CPU. Their PCIe registers and DMA in-

terfaces are complex and may lack documentation. To capture packets on PCIe and

debug the implementation of PCIe protocols, developers often require expensive phys-
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ical layer PCIe protocol analyzers (worth approximately 250,000 US dollars). These

protocol analyzers necessitate a laboratory environment and are challenging to debug

dynamically in a production environment. Furthermore, protocol analyzers cannotmod-

ify PCIe packets and lack sufficient programmability to detect anomalies or statistical

patterns from a large volume of traffic data.

A potential future direction involves the implementation of a transparent PCIe

Transport Layer Protocol (TLP) debugger based on programmable network cards. This

PCIe debugger would capture communication packets exchanged between the PCIe de-

vice and the CPU. The challenge in this endeavor lies in the fact that the physical topol-

ogy and routing of PCIe are fixed, making it impossible to implement attacks similar to

ARP in local area networks on PCIe. However, by deceiving the device driver, PCIe

traffic can be redirected to the PCIe debugger. Depending on the initiator of the request,

the communication between PCIe and CPU can be divided into two categories.

The first category encompasses MemoryMapped I/O (MMIO) operations initiated

by the CPU. In these operations, the CPU accesses the memory area pointed to by the

PCIe Base Address Register (BAR). The driver program obtains the BAR address from

the operating system kernel routine, and it can modify this operating system kernel

routine to return the address of the PCIe debugger, rather than the address of the device

itself. Subsequently, an address mapping is established in the PCIe debugger, allowing

the CPU’s memory-mapped I/O operations to be transmitted to the PCIe debugger. The

PCIe debugger then acts as a proxy to send the request to the target device.

The second category involves device-initiated DMA operations used to access host

memory. At first glance, it may seem impossible to predict which memory address

the device will access. However, well-defined devices should only access addresses

allocated to them by the driver. In Linux, there are two methods for device drivers to

obtain DMA memory areas and their physical addresses. The plan is to modify these

two operating system routines separately, replacing the host memory address with the

PCIe debugger’s address when allocating DMAmemory areas, and establishing address

mapping in the PCIe debugger. Consequently, when the device attempts to DMA to the

host memory, it is actually DMAing to the PCIe debugger, which then DMAs the data

back to the host memory according to the mapping table.

By employing this method, the communication between the host driver and the

PCIe device will be intercepted by the PCIe debugger. FPGA-based PCIe transport

layer protocol debuggers possess sufficient flexibility to modify, count, filter, and inject

packets, thereby facilitating fuzz testing and stress testing of PCIe devices.
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2. Microsecond Latency Hiding

When using customized hardware to accelerate CPU processing in applications,

the original CPU software processing logic is replaced with three steps: sending com-

mands to the accelerator, waiting for the accelerator to process, and receiving results

from the accelerator. During the waiting period, the CPU thread is blocked. Similarly,

in distributed systems, remote procedure calls (RPCs) are often needed and wait for

results from other microservices or nodes. Traditionally, developers generally use the

method of adding more threads to hide the latency of accelerator processing and re-

mote procedure calls, that is, letting the operating system switch to other threads for

processing during this period. However, with the improvement of data center acceler-

ator performance and the reduction of acceleration task granularity, some acceleration

tasks only take a few microseconds to tens of microseconds. Similarly, the network

latency of remote procedure calls has also dropped from previous milliseconds to mi-

croseconds to tens of microseconds. Operating system thread scheduling also requires

3 to 5 microseconds, which is almost equivalent to the execution time of acceleration

tasks and the network latency of remote procedure calls. This means that switching to

other threads during the waiting period is not economical, and it may be better to let the

CPU wait for the completion of the acceleration task on the current thread. However,

this also means a waste of CPU time during the waiting period, which to some extent

affects the effect of customized hardware accelerators saving CPU.

A future research direction is to implement microsecond latency hiding of appli-

cations from the perspective of compilation. We have two main observations: first, the

application may have multiple independent hardware acceleration tasks to be processed,

so it is possible to mine these independent acceleration tasks for concurrent processing.

Second, many applications are event-driven, that is, they process incoming events in a

permanent loop. There may be no dependencies between different event processing, so

you can temporarily suspend the event being processed and process the next unrelated

event.

The complexity of these two latency hiding schemes resides in the determination

of ”dependencies”. In functional programming languages, the dependencies between

pure functions are relatively straightforward to discern. However, in most programming

languages frequently utilized by developers, memory is shared, and many codes are

interdependent. For instance, object creation necessitates memory allocation, which

influences the memory layout. Therefore, strictly speaking, the creation order of any

two objects is dependent. Whether there is a dependency between two remote procedure
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calls often hinges on their semantics. Consequently, the central challenge of the problem

is for developers to specify which dependencies are genuinely unnecessary.

A potential solution is the ”async” decorator, which enables developers to desig-

nate that a function can be executed asynchronously. Async functions can internally

use wait calls to register events, relinquish the CPU, and awaken when the event is es-

tablished (for example, awaiting the return of the accelerator or remote procedure call).

Functions that can be executed asynchronously will not be interrupted during execution

(unless a wait is called, or there is an asynchronously executable subroutine), thus elimi-

nating concerns about reentry problems. Each async function execution is implemented

with a coroutine. Furthermore, the ”async pure” decorator is proposed, which allows

developers to specify that a function can not only be executed asynchronously but also

has no side effects, so it can be speculated that it is executed, that is, it is executed when

the execution conditions are not yet determined, without worrying about it producing

irreversible side effects.

For instance, offloading stateless computations to accelerators, read-only remote

procedure calls, and opening files are async pure functions. And executing write oper-

ation remote procedure calls, processing an event routine is a general async function.

If there is a logical dependency between async functions, for example, different events

initiated by the same user need to be processed in order, then a lock can be set for each

user, and the lock is added at the beginning of event processing and unlocked after the

end. The lock is implemented with a wait call, so the overhead is very minimal.

In addition to mining the internal parallelism of applications from the perspec-

tive of compilation, another future research direction is to implement high-performance

context switching and scheduling managed by hardware from the perspective of archi-

tecture [6] . The network processor hardware scheduler introduced in Section 2.3.2 can

be used as a useful reference.

3. Translation from High-Level Language to Low-Level Language

Modern software enjoys the dividends of Moore’s Law. For the sake of devel-

opment efficiency, it generally uses high-level language modular programming, and

the compiler’s optimization of software is not sufficient. Modern software written in

high-level languages, even if it has similar functions to software based on low-level

languages (such as C language) many years ago, its performance often differs a lot.

The ”Andy-Bill Law” [302] vividly depicts this phenomenon, that is, the performance in-

crease brought by high-performance new processors (represented by Intel’s CEOAndy)

is often consumed by software (represented by Microsoft’s founder Bill Gates), and the
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performance perceived by end users is still similar. There is also a lot of room for op-

timizing software performance from the perspectives of programming frameworks and

compilers. David Patterson pointed out that rewriting Python language as C language

can improve the performance of applications by 50 times, and if a series of optimizations

are used, achieving a performance improvement of 1000 times compared to Python is

not a dream [303] .

The future research direction is the automatic translation from high-level languages

to low-level languages. Althoughmany high-level languages are dynamically typed and

have high-level language features such as introspection, the type of input for a given

high-level language application is often relatively certain.

4. Automatic Generation of Network Application Data Plane

In order to enhance the efficiency of network applications andminimize CPU over-

head, data centers have begun to incorporate programmable switches and network cards

to offload virtualized network functions, transport protocols, key-value storage, dis-

tributed consistency protocols, and so forth. Compared to general-purpose processors,

programmable switches and programmable network cards have fewer resources and

more restricted programming models.

Consequently, developers typically partition a network function into a data plane

that manages common case packets and a control plane that deals with the remainder.

The data plane function is implemented in a packet processing language (such as P4)

and offloaded to hardware.

Creating packet processing programs for network application offloading is labor-

intensive. Initially, even with protocol specifications or source code, developers still

have to sift through thousands of pages of documents or code to identify the common

function. Additionally, many implementations and protocol specifications have subtle

differences, so developers often need to examine packet capture records and manually

reverse engineer behavior specific to an implementation.

The future research direction is to automatically learn the behavior of a speci-

fied network application and thereby automatically generate reference code for the data

plane. In this manner, developers only need to design some simple data plane test cases

and run the specified network application. The data plane automatic generation system

will capture the input and output packets and search for a packet program to generate

the output tested for the specified input test cases.

Clearly, passing the test cases does not imply that the program can correctly gen-

eralize in other input situations, so the automatically generated code can only serve as

229



Chapter 7 Conclusion and Future Work

a reference for developers, who can supplement the details of special case handling

based on it. Nevertheless, the automatically generated reference program can assist de-

velopers in understanding the usual working mode of the protocol and save a significant

amount of development time.

In general, generating programs through examples is considered challenging due

to the vast search space and the theoretically undecidable halting problem. Fortunately,

packet programs that can be offloaded to hardware are typically quite simple. Com-

mercial programmable switches and network cards do not support loops and recursion,

eliminating the issue of determining the halting problem. Additionally, for each per-

sistent state, each packet is only allowed one read-write operation on the data plane.

Furthermore, the logical depth from packet input to output is limited by the hardware

pipeline depth. These restrictions significantly reduce the program’s search space. More

importantly, to reduce the search space, test cases can be generated to eliminate some

potential search directions. To generalize test cases as much as possible, the generate

and test method is used to observe the behavior of the specified application. To select

one of the infinitely many programs that can generate the specified output, Occam’s

razor is used to choose the program with the shortest description length. When multiple

programs have the same description length, the system can generate deterministic test

cases to determine the correct one, or report to the user.

5. Task Division of Heterogeneous Distributed Systems

The data center is a distributed system composed of heterogeneous hardware. Each

type of hardware possesses certain computing, storage, and network interconnection re-

sources. Different hardware can perform different types of calculations and have differ-

ent calculation efficiencies, for example, the CPU is suitable for control-intensive cal-

culations, the GPU is suitable for general Single Instruction Multiple Data (SIMD) type

calculations, the TPU is suitable for convolution and matrix multiplication type calcu-

lations, and the FPGA is suitable for communication-intensive calculations. The ability

of heterogeneous hardware to communicate with each other also varies, for example,

GPUs can communicate directly through NVLink, while the FPGA, as a programmable

network card, is a necessary pass-through between the server host and the data center

network.

Given a computational flow graph and a high-level language description of each

component within it, a crucial question arises: how should these components be mapped

onto heterogeneous computing hardware? Clearly, considering only the execution effi-

ciency of each component on various computing hardware is insufficient. The commu-
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nication overhead between components must also be taken into account. For instance,

the normalization operation between convolution layers in neural networks may have

a higher execution efficiency on a GPU than on a TPU. However, the data migration

overhead between the GPU and TPU may outweigh the performance loss of execut-

ing the normalization operation on the TPU. Therefore, it might be more performance-

optimized to fuse the convolution and normalization operations on the TPU.

Generally, a heterogeneous computing cluster can be formalized as a topology

graph. The vertices represent computing devices, memory and storage devices, and

network switching devices, while the edges represent data paths between nodes. Each

computing device supports several computing types and possesses the bandwidth and

latency of each type of computing. The attributes of the data path include bandwidth

and latency. Each vertex in the computational flow graph represents the amount and

type of computation, and each edge represents the amount of data to be transmitted.

The task division problem aims to find a mapping from the computational flow graph

to the topology graph of the heterogeneous computing cluster, ensuring that the latency

and throughput meet the application’s constraints.

For components with large computational scales, they also need to be divided

acrossmultiple hardware for parallel or pipeline execution. A component’s computation

may have multiple splitting methods, and different splitting methods require different

communication overheads. It is necessary to calculate the amount of computation re-

quired on each hardware based on system performance requirements or the limitation

of the number of heterogeneous hardware. Then, the optimized component splitting

scheme can be obtained based on the communication and computation overhead model.

7.2.3 Operating System

The ”operating system” of a distributed system encompasses the conventional op-

erating system on the host, the scheduling, management, monitoring system of the dis-

tributed system, and shared basic service middleware. This paper investigates the op-

timization of the operating system network protocol stack and key-value storage in the

distributed system. However, there are also multiple subsystems within the operating

system and various middleware in the distributed system, such as storage and message

queues. These subsystems and middleware can evidently also be accelerated with pro-

grammable network cards.

Moreover, in traditional distributed systems, due to high communication costs, hot

migration and high availability often necessitate developers to utilize specific program-
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ming frameworks. In data centers with high-performance data center networks, based

on programmable network cards, it might be feasible to achieve efficient hot migration

and high availability of general applications. This will render the data center more akin

to a colossal computer, where applications can fully exploit heterogeneous computing

and storage resources, and are almost imperceptible to hardware failures.

1. Acceleration of Storage Virtualization

Virtual storage in cloud computing comprises local storage and remote storage.

Remote storage is a distributed storage system virtualized by storage nodes, offering

high reliability, high availability, scalable capacity, and scalable throughput, which is

the primary storage method in the cloud platform. Local storage includes Non-Volatile

Memory (NVM) and NVMe high-speed flash storage, primarily used for distributed

databases and other applications that necessitate extreme performance but do not require

high reliability storage.

The most fundamental service that virtual storage provides to customers is block

storage, which can be mounted as a block device to a virtual machine for use as a disk.

Cloud services also provide other storage services such as object storage and file stor-

age. Most of these services provide an abstraction similar to key-valuemapping, i.e., the

user specifies a key to read (GET) or write (PUT) the corresponding value. Key-value

storage, as a basic data structure, can be divided into persistent storage and temporary

storage; depending on whether replication and disaster recovery are needed, whether

transactions are supported, whether strong consistency or eventual consistency is pro-

vided [304] , and whether range indexing, secondary indexing, content indexing, etc., are

supported, a variety of storage systems can be combined to meet the needs of different

applications.

The two fundamental logical concepts of the virtual storage system are the client

and the server. As depicted in Figure 7.2, the client is the user of the cloud storage ser-

vice, such as the computing node hosting the customer’s virtualmachine in the cloud; the

server provides abstractions like block storage, object storage, and file storage, mapping

logical storage read andwrite requests to physical storagemedia read andwrite requests.

Multiple clients may share the same virtual storage, for instance, multiple computing

nodes in a distributed data processing system may need to access shared raw data and

configuration parameters, and the intermediate results of data processing can also be

passed through storage. The same virtual storage may correspond to multiple storage

servers, used to achieve scalable storage capacity, scalable throughput, fault tolerance,

and high availability.

232



Chapter 7 Conclusion and Future Work

Figure 7.2 A brief architecture of data center cloud storage.

The above storage server structure is relatively simplified, in reality, it is often di-

vided into multiple levels. For example, Microsoft Azure’s cloud storage service is di-

vided into front-end nodes, middle nodes, and back-end nodes [147] . The front-end node

is responsible for parsing and verifying requests, and based on the data shard mapping

table (such as the hash value of the key), it distributes to the middle node of the data

shard. The middle node is responsible for implementing the processing of requests and

storage data structures, mapping user requests into a series of storage read and write

operations, and distributing them to the corresponding back-end nodes. The back-end

node is responsible for implementing data replication and storage on physical media.

In addition to software processing, data center storage also has significant network

overhead. In the data center, because the storage server needs to install a large capacity

of storage media, the hardware configuration of the storage node is generally different

from that of the computing node. Moreover, because the virtual machine monitor soft-

ware on the computing node often needs to be upgraded to add new features and patch

security vulnerabilities, the stability of the computing node is generally lower than that

of the storage node. To ensure the high availability of storage, the storage node and

the computing node are usually separated on different physical hosts. Therefore, the

storage client software in the virtual machine monitor on the computing node usually

needs to move the data from the storage server over the network. That is, each I/O

request of the customer’s virtual machine needs to be captured by the virtual machine

monitor, and then starts from the storage client software in the virtual machine moni-

tor on the computing node, and goes through the processing of the front-end, middle,

and back-end nodes of the storage server before it can reach the storage medium. To

233



Chapter 7 Conclusion and Future Work

ensure the security of data, the data on physical storage media generally needs to be

encrypted. To save storage space and reduce the cost of unit storage capacity, many

cloud manufacturers also compress the content of storage. Compression and encryp-

tion are generally performed on the storage server and are computationally intensive

operations. For example, according to experiments, under the good compression rate

of LZ77, a server CPU core can usually only compress 100 MB of data per second; for

a 1 KB block, AES encryption and SHA-256 signatures can also only process 100 MB

of data per second.

Due to the overhead of software processing and network transmission, the latency

of block storage on the cloud computing platform is generally 0.5 to 1 millisecond, and

the latency of object storage is generally 1 to 10milliseconds [100] , which is significantly

higher than the latency of physical storage media (for instance, the latency of SSD is

generally 0.1 millisecond). Moreover, the throughput of cloud storage is also lower than

the corresponding physical storage media. For example, the highest throughput of SSD

cloud disk is 50 K I/O per second, while the throughput of a single data center-level

SSD has reached hundreds of K I/O per second [100] . To fully utilize the performance

of the latest data center storage hardware, cloud storage services need to be optimized

across the stack. For instance, many data centers have already used the RDMA protocol

to reduce the CPU overhead and latency of the network protocol stack in the storage

protocol stack [41] . Some data centers also reduce the number of layers by improving

the protocol stack of cloud storage and appropriately integrating the functions of the

client, server front-end, middle, and back-end nodes [151] . HyperLoop [305] uses RDMA

network cards and Non-Volatile Memory (NVM) to reduce the latency of storage write

transactions.

2. Acceleration of Remote Procedure Call and Message Queue

Message passing in distributed systems usually adopts the Remote Procedure Call

(RPC) or Message Queue model, or a combination of both. In the RPC model, the

server registers a procedure to respond to the client’s RPC request. In the message

queue model, the producer broadcasts or distributes messages to several consumers. To

achieve decoupling of producers and consumers, buffering of messages, and reliable de-

livery, the message queue model often introduces a broker service, such as Kafka [77] .

In terms of programming interfaces, distributed applications usually use RPC libraries

andmessage queuemiddleware, which rely on the operating system’s socket interface to

send and receive messages. This paper studies the acceleration of the operating system

socket interface, but does not consider higher-level RPC and message queue middle-
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ware. Google’s research [6] shows that these message middleware often add tens of mi-

croseconds of delay, accounting for a large part of the entire end-to-end network delay.

To reduce the end-to-endmessage passing delay of distributed systems, it is necessary to

use programmable network cards and other hardware and user-space libraries to achieve

high-performance RPC and message queues. One solution is to implement high-level

abstractions such as RPC and message queues based on the user-space socket system

in Chapter 6; another solution is full-stack optimization that breaks the boundaries of

traditional network protocol stacks, such as the recent eRPC [21] is a meaningful explo-

ration in this regard. For simpler applications like message queues, it is even possible

to explore implementation in programmable network cards, bypassing the host CPU.

3. User-space Operating System Based on Microkernel

Chapter 6 proposes a user-space network protocol stack, SocksDirect. The tech-

nology in Chapter 6 can be used to accelerate more abstractions of the operating system.

In addition to the network protocol stack, the storage protocol stack of the op-

erating system also has high overhead. The Linux storage protocol stack is logically

composed of five layers. First, there is a virtual file system layer similar to the net-

work protocol stack, providing an API based on file descriptors. Second, the file system

layer implements the abstraction of the file system, providing functions such as file path

lookup, permission management, and space allocation. Third, the cache buffer layer is

closely integrated with Linux’s memory management mechanism, responsible for man-

aging read cache and write buffer, as well as the page swapping mechanism. Fourth,

the block device layer abstracts the storage device into several ”blocks”, implementing

the merging and sorting of block access. Fifth, at the device driver layer, the storage

medium driver communicates with the hardware to read and write disk blocks. In the

storage protocol stack, the virtual file system layer is also an important source of over-

head. For many applications that use direct I/O, such as databases, the file system and

cache buffer layers are unnecessary. Similar to the network protocol stack, there are

multiple data copies in the storage protocol stack. For many applications, there is also a

copy between the storage and network protocol stacks. Zero-copy technology based on

page remapping can be used in network and storage protocol stacks, so that each piece

of data only has one copy in physical memory, and only the mapping relationship of

virtual memory is copied between protocol stacks.

The technology in Chapter 6 has a broader application prospect: a user-space op-

erating system based on microkernel. The operating system mainly includes three func-

tions: resource virtualization, inter-process communication, and high-level abstraction.
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Chapter 6 implements the virtualization of network resources and inter-process message

passing, providing a high-level abstraction of sockets. A user-space storage protocol

stack can implement the virtualization of storage resources and the high-level abstrac-

tion of the file system. The remaining functions of the operating system include the

virtualization of computing resources (i.e., process scheduling) and inter-process syn-

chronization (such as locks and semaphores). These functions can be implemented in

user-space daemons or in programmable network cards. After the functions of the tra-

ditional operating system are moved to user-space and programmable network cards, a

microkernel can be adopted while maintaining compatibility with existing applications.

An operating system based on a microkernel not only has higher performance but

also facilitates the implementation of high availability for general distributed applica-

tions, which will be the topic of discussion in the next section.

4. High Availability of General Distributed Applications

Hardware failures and operating system crashes can cause some nodes of dis-

tributed applications to fail. High availability of distributed applications is very im-

portant. Many existing request processing and batch processing systems can simplify

fault-tolerant programming of distributed applications. These programs usually require

programmers to explicitly separate computation from state and store the state in a fault-

tolerant storage system. However, many existing applications (such as Node.js, Mem-

cached, and Python logic in Tensorflow) do not natively support fault tolerance. In

addition, fault-tolerant programming frameworks usually have lower performance than

non-fault-tolerant versions. We hope to solve the challenge of transparent and efficient

fault tolerance for general distributed applications. Specifically, the challenges are di-

vided into process migration, deterministic replay, and distributed snapshots.

First, there is a trade-off between fault tolerance at different levels. Fault tolerance

at the architectural level requires customized hardware. Fault tolerance mechanisms

at the virtual machine level consider all network communications to be bidirectional

(because there are data transmission and ACK confirmation messages), and cannot dis-

cover high-level semantics such as inter-process communication. Fault tolerance at the

system call level requires modifications to the operating system kernel to implement

process migration, for example, extracting the process state from the source host and

injecting it into the destination host. Process migration in Linux is complex because

states from different processes are mixed in a macrokernel. The Unikernel method can-

not support many existing inter-process communication mechanisms. For this, future

research can draw on the SocksDirect architecture in Chapter 6 to design a distributed
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user-space runtime library operating system that is compatible with existing Linux ap-

plication programming interfaces. The process memory snapshot simultaneously ob-

tains the state of the runtime library and the application, retains high-level semantics,

and is easy to optimize.

Secondly, State Machine Replication (SMR) and snapshot replay are two primary

methods to achieve fault tolerance. SMR necessitates at least two hosts to run the same

application, thereby introducing CPU overhead. Snapshot-based systems usually buffer

an application’s output during the interval between two consecutive snapshots, as the

system cannot guarantee deterministic execution since the last snapshot when a host

fails. This so-called output commit problem introduces a significant request service de-

lay for transparent fault-tolerant systems. Alternatively, recording all non-deterministic

events of an application still incurs substantial overhead. A future research direction is

to predict an application’s non-deterministic events based on its recent execution his-

tory. If the prediction is accurate, the application continues. Otherwise, it waits for a

short time to realize the prediction, as many uncertainties arise from tiny time fluctu-

ations. In this way, the system only needs to record the events of incorrect prediction

when the waiting times out, reducing the recording overhead.

Thirdly, transparent fault tolerance mechanisms need to take snapshots of dis-

tributed applications without pausing the entire system. Consistent snapshot algorithms

require all hosts to take snapshots at the same speed and roll back simultaneously when

any host fails. This global synchronization behavior contradicts the goal of fault toler-

ance, which requires the system to continue providing delay-sensitive requests when a

host fails. How to asynchronously generate consistent snapshots for distributed systems

is a future research direction.

5. Data Center Resource Packing Based on Hot Migration

The resource utilization of modern data centers is low, with a large room for opti-

mization. For instance, the average usage rate of most physical servers in a data center

is only about 10

The primary challenge of hot migration lies in creating a consistent snapshot of

the virtual machine state. In a data center composed of diverse hardware, the state of

a virtual machine encompasses not only its CPU, memory, and local storage state, but

also the state of hardware such as GPUs and network cards. These hardware compo-

nents often lack efficient snapshot and recovery functions, necessitating the reloading

of hardware drivers and initialization of the hardware’s internal state on the new physi-

cal node, which results in high latency. The ClickNP framework discussed in Chapter
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4 enables the snapshot and migration of the internal state of network elements, allow-

ing programmable network cards written with the ClickNP framework to efficiently hot

migrate. Technologies such as GPU-Direct RDMA can facilitate efficient transmission

of GPU internal storage. For local storage, the concept of storage disaggregation can be

employed, eliminating the need to wait for data migration to complete. Instead, the vir-

tual machine’s access request on the new node can be redirected to the original storage

during the migration process.

6. Distributed Operating System for Edge-Cloud Convergence

Smart terminals (such as smartphones and PCs) and clouds (data centers) currently

represent the two most significant types of computing and storage devices. The com-

puting and storage capabilities of both the edge and the cloud are rapidly expanding,

and with the advancement of 5G technology, the communication cost between the edge

and the cloud will significantly decrease, while bandwidth and latency will see sub-

stantial improvements. Consequently, edge-cloud convergence will emerge as a cru-

cial trend. On one hand, edge applications will be able to invoke cloud services and

access cloud data at a finer granularity; on the other hand, technologies used for high-

performance communication and computing on the cloud will gradually be applied to

the edge. For instance, by deploying programmable network cards on the edge, power

consumption for 5G network communication can be reduced, performance bottlenecks

can be eliminated, the performance of accessing Flash storage can be enhanced, and

the high-performance user-space socket technology discussed in Chapter 6 can also be

applied on the edge.

The abstraction level of the distributed operating system is worth discussing. If

abstracted at the level of the Linux operating system, compatibility will be the best, and

automatic distributed processing of existing parallel programs can be achieved. How-

ever, the abstraction level of Linux system calls is relatively low. If developers do not

explicitly provide more information, it is difficult to predict the resources that the ap-

plication will access in the future, and the performance for some types of applications

will be poor. One possible way to implement a distributed Linux operating system is

remote system calls, i.e., for each process migrated to a remote system, a shadow pro-

cess is retained locally; system calls on the remote system are captured, sent to the local

shadow process and actually called, and the results of the system calls are sent to the

remote system. The application process needs to wait for the remote system call to re-

turn, i.e., the delay of the system call is greatly increased, so the performance of this

implementation scheme may be poor.
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7.2.4 System Innovation

Envisioning the entire world as a large computer is the vision of Microsoft CEO

Satya Nadella and the dream of many system researchers. The success of cloud com-

puting has led data centers to absorb most of the computing and storage of the human

world, and data centers can be seen as a large-scale computer composed of computing,

memory, storage, and network and interconnection. NVIDIA CEO Jensen Huang [306] ,

Google Engineering Vice President Luiz Barroso [4] and others have already seen data

centers as large-scale computers. System innovation is to consider from a global per-

spective how various hardware and software components work efficiently and reliably

together, and what kind of abstraction to provide to users.

1. Memory Disaggregation and Second-tier Memory Based on Pro-

grammable Network Cards

Memory disaggregation refers to the ability of a computer’s CPU to freely and

transparently share the memory of a remote computer efficiently, which can greatly

increase the utilization of memory and reduce the cost of cloud computing platforms.

Although the performance of the current data center network is far lower than the per-

formance of the CPU accessing the host memory, fortunately, by utilizing the locality of

memory access, if a part of the hot data is still local and the remaining data is accessed

remotely, the bandwidth and latency requirements of the remote memory can be greatly

reduced compared to the local memory. Research from the University of California,

Berkeley, points out that in order to keep the performance difference between the sys-

tem after memory disaggregation and the system using all local memory within 5%, the

bandwidth needs to reach 40 Gbps, and the end-to-end round-trip delay needs to be no

more than 3 to 5 microseconds, which is achievable by the current data center network.

Non-Volatile Memory (NVM) is a prominent research area in the field of memory

and storage. Compared to traditional NAND Flash, Non-Volatile Memory boasts a sig-

nificantly faster access speed. Although it cannot entirely replace DRAM in the short

term, it is expected to substitute some of the conventional memory in the near future.

Non-Volatile Memory offers advantages over DRAM such as lower cost, larger capac-

ity, lower power consumption, and data retention after power off. However, it also has

limitations such as slower access speed and limited write cycles. Non-Volatile Memory,

serving as a storage tier between DRAM and NAND Flash, can be used to expand the

capacity of DRAM memory and also function as fast persistent storage. The effective

use of Non-Volatile Memory is currently a significant research direction.
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Memory disaggregation and Non-Volatile Memory make up second-tier memory,

which is slower but has a larger capacity than DRAM [307] . To expand memory capacity

andminimize the impact on application performance, second-tier memory systems need

to place hot data in local DRAM and cold data in disaggregated remote memory or

Non-Volatile Memory. Most of the current memory disaggregation systems (such as

Infiniswap [308] ) and second-tier memory systems (such as Thermostat [309] ) use page

swapping. Firstly, page swapping needs to go through the operating system kernel, and

each page swap in increases the kernel overhead by about 2.5 microseconds, while the

allowable end-to-end access delay is only 3 to 5 microseconds. Secondly, the memory

disaggregated to remote storage is generally cold data, and the access granularity of

these data may be smaller than the page size, which is generally 4 KB, so transmitting a

whole page not only wastes network bandwidth but also increases latency. Finally, the

decision to swap pages in and out is made in software, making it difficult to accurately

count the access frequency of each page.

The future research direction is based on programmable network card memory dis-

aggregation and secondary memory. By using direct memory mapping instead of page

swapping, the overhead of the operating system kernel is avoided, and the granularity

of memory access is reduced from 4 KB pages to 64-byte cache lines. Local and remote

memory are still in units of pages, relying on page tables to maintain mapping relation-

ships. Programmable network cards can count the remote memory access of each page,

thereby timely migrating hot data to local memory to avoid long-term performance im-

pact.

There are a series of technical challenges in implementing memory disaggrega-

tion based on direct memory mapping based on existing CPU and PCIe architectures.

Fortunately, CPU manufacturers have realized the same problem. We expect that with

the implementation of host interconnection protocols such as CCIX, the programmable

network card with direct memory mapping will achieve better throughput and latency

with the CPU, and the direct memory mapping area can run all instructions like host

memory.

2. Scalable total order communication based on data center networks

The latency in traditional data center networks is arbitrary, so messages cannot

be guaranteed to be delivered in a consistent order. For instance, multiple shards of a

distributed database send logs to multiple replicas. Each replica may receive logs from

each shard in a different order. If not handled specially, this inconsistent order may

break data consistency. The solution to this problem often introduces synchronization
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overhead and complicates the design of distributed systems.

Total order communication provides an abstraction that guarantees that different

receivers process messages from senders in a consistent order. Totally ordering (but un-

reliable) a set of messages can simplify and speed upmany distributed applications, such

as reducing conflicts in Multi-Version Concurrency Control (MVCC) protocols, speed-

ing up distributed consensus protocols, implementing scalable log replication without

central bottlenecks, early detection of TCP tail packet loss, and reducing the tail latency

of scatter-gather mode Remote Procedure Call (RPC). For example, in recent years, the

performance of distributed consensus protocols and distributed transactions has been

greatly improved by improving the orderliness of transmission within the data center.

Fast Paxos [310-313] protocol adopts a best-effort method to improve the orderliness of

transmission. Speculative Paxos [314] and NOPaxos [315] use programmable switches

as centralized sequence number generators or serialization points. NetPaxos [316-317]

and [318] implement the traditional Paxos protocol in network switches. Eris [229] pro-

poses to use network switches as sequence number generators, implement concurrency

control in the network, and achieve fast transaction processing. The work on HotOS

’19 [319] proposes to build a synchronous, i.e., fixed network latency data center net-

work, which can simplify the design of distributed systems.

Since the advent of distributed system research, total order broadcast and multicast

issues have garnered significant attention. However, existing solutions are constrained

by scalability or efficiency. One strand of research employs logically centralized coor-

dination, such as centralized sequence number generators, or tokens circulated among

senders or receivers. Recent research on the co-design of distributed systems and data

center networks falls into this category. However, these centralized solutions struggle

with scalability. Another strand of research employs entirely distributed coordination,

such as exchanging timestamps before the receiver begins processing messages. This

results in additional network communication overhead and latency, reducing system ef-

ficiency. Moreover, the semantics of multicast have a limitation that all receivers must

receive the same message.

Compared to total order multicast, the application scope of Total-Order Message

Scattering (TOMS) primitives is broader. Message scattering is a communication prim-

itive where a host sends a group of (potentially different) messages to multiple hosts

simultaneously. Message scattering is common in distributed systems. For instance, in

distributed storage, a client writes metadata to one storage site and data to another stor-

age site; concurrently, another client reads them. The consistency between metadata
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and data necessitates these operations to be atomically scattered to two storage sites.

Total order message scattering scatters a group of messages from one to many in the

data center network, maintaining a linearizable order, and each message is delivered at

most once.

To support improved scalability, and to expedite more distributed applications be-

sides distributed transactions, scalable total order communication based on data center

networks is an intriguing research direction. In the data center environment, the network

topology is regular, and the switch generally has good programmability. Total order

message scattering assigns work to each switch and terminal server, thereby achieving

high scalability. The core design principle is to separate the processing of order in-

formation from message forwarding. To obtain order information, use programmable

switches to aggregate order information in the network, forming the system’s ”control

plane”. On the ”data plane”, total order message scattering forwards messages as usual,

and buffers and rearranges received messages at the receiver. The sender stamps an

increasing timestamp on each group of scattered messages, and the receiver needs to

deliver messages to the application in the order of timestamps. The control plane’s or-

der information provides a ”barrier” for the receiver that ”all messages received after

this are later than a certain timestamp”, allowing it to deliver messages in the order of

timestamps.

The preliminary work of this research has been published by collaborator Zuo

Gefei at the ACM SOSP 2017 Student Research Competition (SRC) [320] .

A significant challenge in the study of total order communication is reliability.

Ensuring reliable total order communication in a network with packet loss and node

failures is at least as difficult as the distributed consensus problem. It requires more

complex fault tolerance and failure recovery mechanisms, and local failures can eas-

ily affect global communication efficiency. If the reliability of communication is not

guaranteed, but only the order of received packets is guaranteed, the application scope

will be significantly reduced. It must be combined with other traditional methods to en-

sure the correctness of the distributed system, but it can greatly reduce the out-of-order

situation and improve efficiency.

Other aspects of distributed transactions can also benefit from the co-design with

data center networks. Hyperloop [305] uses programmable network cards on storage

nodes to write operations into the buffer of non-volatile memory, and immediately

replies to the computing node with a confirmation message. The software on the storage

node then asynchronously processes the write operations in the non-volatile memory.
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This eliminates the delay of write operations waiting for the storage node software to

process. Google Spanner [321] uses globally synchronized GPS clocks to achieve a high-

performance database with cross-geographical area replication.

3. Database combining online transactions, batch and stream processing

Modern big data processing primarily has three paradigms: online transaction pro-

cessing (OLTP), batch processing, and stream processing. Online transaction process-

ing is used for transactions that require a faster response time and stronger consistency.

Generally, each transaction only involves a small part of the dataset and updates are

frequent. Batch processing is mainly used for offline data analysis, characterized by

large amounts of data and computation. Stream processing is suitable for analysis tasks

that require high real-time performance, and can incrementally update states and output

results based on changes in data.

Traditionally, big data processing systems typically employ lambda architecture,

wherein online transaction processing serves as the data source for batch and stream pro-

cessing, and its generated data updates are synchronized to both the batch and stream

processing components. The batch processing component periodically recalculates the

results, while the stream processing component continuously updates the output based

on the last batch processing results and the updated data from the stream input. Ul-

timately, the outputs of the batch processing and stream processing components are

merged and delivered to the user. Firstly, the lambda architecture necessitates data an-

alysts to explicitly segregate the data into online, batch, and stream components, write

processing programs independently, and merge the results. This development process

is complex and susceptible to inconsistency. Secondly, the stream processing in the

lambda architecture may rely on the results of the last batch processing, and the de-

lay of batch processing may result in inaccuracies in the results, and this delay is not

necessarily required in terms of performance.

In recent years, HTAP (Hybrid Transactional and Analytical Processing) databases

that amalgamate online transaction processing (OLTP) and offline data analysis pro-

cessing (OLAP) transactions within the same database have gained popularity. HTAP

databases address the delay issue from online transaction processing to batch process-

ing analysis, but still do not support stream processing. Users need to explicitly rerun

queries to obtain updated batch processing results, and the processing is based on the

state of the database at the commencement of the query, and cannot reflect the real-time

state of the database. The responsive databases proposed by the academic community,

such as DBToaster, integrate online transaction processing and stream processing, but
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all intermediate results are cached and processed incrementally, and the overhead is

substantial. For instance, some types of batch processing are challenging to update in-

crementally, and a more performance-wise reasonable approach is to allow a certain

delay in data updates.

The future research direction is a responsive database system that efficiently sup-

ports online transaction processing, offline data analysis, and stream processing simul-

taneously. Responsiveness is reflected in three aspects. First, each stored procedure

transaction is responsive to the update operations of other parallel transactions. The up-

dates of the basic tables are synchronized to the running offline data analysis and stream

processing transactions. These running transactions save the appropriate intermediate

state and update it incrementally. Therefore, each transaction is naturally serialized at

the transaction completion time, that is, the query result of the stored procedure transac-

tion reflects the real-time state of the database. Stream processing transactions are con-

sidered to be continuously running, and can report changes in the query results caused

by database incremental updates to users in real time.

Secondly, the ”push” and ”pull” of the computational flow graph of transaction

processing are responsive. In the internal computational flow graph of the database,

each operator of the traditional database is ”pull” mode, that is, each time the user needs

a query result, the computational flow graph is re-executed; while in stream processing

and responsive databases, each operator is ”push” mode, that is, each time the data of

the basic table is updated, all intermediate operator results are updated and saved until

the final query result is updated, regardless of whether the user needs real-time updates.

According to the user’s requirements for update timeliness, the database dynamically

adjusts the ”push” and ”pull” modes of each operator in the computational flow graph,

as well as the frequency of ”push”.

Finally, the physical data storage structure and index respond to data access pat-

terns. The data update log of the basic table is used as the data source, and the row-based

and column-based data storage structures are both caches, optimized for point queries

and analytical queries respectively. Indexes are also considered caches. Views and

intermediate results of analytical queries may also be cached. The database needs to

adjust the choice of whether to cache or not based on the data access pattern, because

caching can speed up read operations, but it adds a burden to write operations.
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