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Trend 1: Intelligent Network Devices

SmartNICs
(Microsoft)

Programmable Switches
(Barefoot Tofino)
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FPGA-based On-Path SmartNICs

A Cloud-Scale Acceleration Architecture, ISCA ’16 (Microsoft)

Since 2016, every new server
in Azure has deployed an
FPGA-based SmartNIC

• Network virtualization
• Storage virtualization
• Bing ranking acceleration
• Compression acceleration
• Encryption acceleration



SmartNICs in the Public Cloud

• Network Virtualization consumes CPUs,
e.g., 5 physical cores per host.
• Each physical core sells for $0.1 per hour.
• Max potential value $900 per year.
• $4500 over the lifetime of a server.

• How much does an FPGA-based
SmartNIC cost?
• Less than $1000 when purchased in large
bulk.

Azure Accelerated Networking: SmartNICs in the Public Cloud, NSDI ’18 (Microsoft)



SmartNICs in the Public Cloud

Azure Accelerated Networking: SmartNICs in the Public Cloud, NSDI ’18 (Microsoft)



Challenges of FPGA-based SmartNICs



FPGA Programming Made Simple

ClickNP: Highly Flexible and High Performance Network 
Processing with Reconfigurable Hardware, SIGCOMM ‘16



When to Use FPGA – the 10/100/1000 Rule

• 10 – 10 years of workload lifetime
• If the workload is shifting too fast, FPGA is not as agile as CPUs

• 100 – 100 lines of C++ code
• If the workload is too complicated, an FPGA implementation consumes too
much area

• 1000 – 1000 servers
• If the workload is too lightweight, the FPGA development cost is hard to
amortize



ASIC-based On-Path SmartNICs: AWS Nitro

• Traditional: Hypervisor (dom0)
consumes several cores
• Network virtualization (VPC)
• Storage virtualization

• Local instance storage
• Network-attached EBS volumes

• Management

Security benefits of the Nitro architecture - SEP401-R - AWS re:Inforce 2019



AWS Nitro Removes Hypervisor CPU Cost

Security benefits of the Nitro architecture - SEP401-R - AWS re:Inforce 2019



AWS Nitro Enables Bare-Metal Instance

Security benefits of the Nitro architecture - SEP401-R - AWS re:Inforce 2019



AWS Nitro Provides Security Benefits

Security benefits of the Nitro architecture - SEP401-R - AWS re:Inforce 2019



AWS Nitro Provides Security Benefits

Security benefits of the Nitro architecture - SEP401-R - AWS re:Inforce 2019



AWS Nitro Provides Security Benefits

Security benefits of the Nitro architecture - SEP401-R - AWS re:Inforce 2019



NP-based On-Path SmartNICs

Huawei Hi1822 SmartNICCavium OCTEON II 68xxNetronome Agilio CX SmartNIC



NP-based SmartNICs: Hard to Program

• Need to read 1000+ pages of documents
• 10+ data structure and 10+ packet processing accelerators on chip

• An NP-based RDMA implementation has 10K+ lines of C code
• Limited instruction cache: cache thrashing if not optimized
• Need to carefully arrange the hot paths to make sure it fits in the cache

• Need to pipeline accesses to DMA and data structures on chip
• A classical latency hiding problem: the trade-off between polling and context
switch
• When the flow processing cores waits for data structure access and locks, if it
switches context to other QP contexts, loading the context takes time
• Typical latencies: on-chip data structure access < context switch < DMA



SoC-based Off-Path SmartNICs (aka. DPU)

Mellanox BlueField



Off-Path vs. NP-based On-Path SmartNICs



DPU is Not Yet Another CPU

NVIDIA DATA CENTER PROCESSING UNIT (DPU) ARCHITECTURE, HotChips 2021



DPU Must Include Hardware Acceleration

NVIDIA DATA CENTER PROCESSING UNIT (DPU) ARCHITECTURE, HotChips 2021

DPU: A convergence of Off-Path and NP-based On-Path SmartNICs



How to Choose SmartNICs?

• ASIC and FPGA are similar.
• FPGA is more programmable.
• ASIC is cheaper in extremely large scale (1M+ hosts).
• Suitable for large cloud providers.

• NP-based SmartNICs and DPUs are similar.
• Only offloading tasks to generic processors does not work.
• Hardware acceleration adds complexity to programming, but essential for
performance.
• Suitable for small-to-medium scale deployments.
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Programmable Switch: P4

Server Switch

Example [NetBricks, OSDI ’16] Barefoot Tofino

Packets per second ~30 million > 1 billion

Bandwidth 10-100 Gbps 6.5 Tbps

Processing delay 10-100 us < 1 us

Visibility Narrow Wide

Memory capacity Large Small

Programmability High Low



Use Case 1: NIC + Switch Congestion Control

HPCC: High Precision Congestion Control, SIGCOMM ‘19

Towards Compute-Native Networking, APNet ‘21



Use Case 2: Sub-RTT Coordination on Switches

• High throughput
• Low latency
• Strong consistency
• Fault tolerance

Directly from high-
performance switches

Chain replication in 
the network

NetChain: Scale-Free Sub-RTT Coordination, NSDI ‘18



Use Case 3: SHARP for AI Param Aggregation

THE NVLINK-NETWORK SWITCH: NVIDIA’S SWITCH CHIP FOR HIGH COMMUNICATION-BANDWIDTH SUPERPODS, HotChips ‘22



Why Intel Stopped Tofino



SmartNIC or Programmable Switch?

Programmable 
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Host

SmartNIC

CPU Mem

Host

SmartNIC

CPU Mem

SmartNIC Programmable Switch

Congestion 
control

DCQCN, TIMELY, MP-
RDMA, IRN

HPCC, pFabric, DeTail, CP, 
NDP

Load balancer VFP SilkRoad

Key-value store Pilaf, FaRM, DrTM, 
FaSST, KV-Direct

SwitchKV, NetCache, 
IncBricks

Aggregation NetAgg, CamCube SHARP, DAIET, SwitchML, 
ATP

Lock DSLR NetLock

Coordination / 
Replication

Consensus in a Box, 
DARE, APUS, Derecho, 
Mu

NetChain, NetPaxos, 
SpecPaxos, NOPaxos, 
Eris

Programming 
system

Floem, iPipe, StRoM, 
ClickNP, FairNIC, λ-NIC

SNAP, Frenetic, P4, 
P4visor, 𝜇P4, Domino, 
Lyra, Gallium
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Trend 2: Fast Interconnect

THE NVLINK-NETWORK SWITCH: NVIDIA’S SWITCH CHIP FOR HIGH COMMUNICATION-BANDWIDTH SUPERPODS, HotChips ‘22



Why LLM Training Needs High Bandwidth



Tensor Parallelism Needs High Bandwidth
Back-of-envelope estimation for tensor parallelism in
attention computation:
• Computation cost is roughly:

3 * batch size * token length * (embedding size * 
embedding size / num GPUs) * 2 flops

• Communication cost is roughly:
Batch size * token length * embedding size * 2 bytes

• Computation / Communication = 3 * embedding
size / num GPUs

• Example: LLaMA-2 70B, embedding size = 8192

• Computation FLOPS of H100: 989T Tensor flops for 16 bit
• If we use 8 GPUs for tensor parallelism and assume 100% FLOPS utilization:

• Bandwidth >= Computation / (3 * embedding size / num GPUs) = 989T / (3 * 8192 / 8) = 321 GB/s
• Bi-direction bandwidth >= 642 GB/s

• That’s why we need 900 GB/s bandwidth for NVLink



Tensor Parallelism Also Needs Low Latency
Taking latency into account:
• Communication time is roughly:

(Batch size * token length * embedding size * 2 bytes
/ bandwidth) + latency

• Computation time is roughly:
3 * batch size * token length * (embedding size * 
embedding size / num GPUs) * 2 flops / computation
flops

• Example: LLaMA-2 70B, embedding size = 8192,
token length = 4096, batch size = 1

• Communication time = (1 * 4096 * 8192 * 2 / 450G) + latency = 14 us + latency
• Computation time = 3 * 1 * 4096 * (8192 * 8192 / 8) * 2 / 989T = 19 us
• To achieve 100% FLOPS utilization: Latency <= 19 us – 14 us = 5 us
• NVLink latency is <1 us when GPU P2P is enabled.
• However, if we use CPU as a proxy among GPUs, the latency would be >10 us, and the throughput also suffers.



Direct Peer-to-Peer Interconnect



Convergence of Intra- and Inter-host Network

Network Switch

NIC

NIC



Memory Semantics
Program Mem Mem ProgramNetwork

Message

Semantics Example

ZeroMQ / Kafka
RDMA send/recv

Remote
Memory
Access

RDMA read/write 
/atomic
CXL Load/Store

RPC gRPC, Thrift

Byte Stream Socket send/recv010101010

010 101 010

W 0xA: 010 W 0xB: 101 R 0xC

Invoke A(010) Invoke A(101) Invoke B(010)

Memory
Semantics



Exploiting Parallelism with Memory Semantics

• RDMA is strictly in-order communication
• Hard to utilize multiple network paths due to
reordering cost at receiver
• One lost packet blocks subsequent transactions from delivery
• Hard to support page faults because a slow page-fault memory access would
block all subsequent accesses

• Many memory accesses can be executed out-of-order
• Example: transferring multiple large tensors
• Parallelize transfer over multiple network paths to improve bandwidth
• A lost packet only blocks one transaction
• Page-fault and other slow memory accesses can be processed out-of-order



Load/Store vs. Read/Write
• Read/Write is asynchronous remote memory access

• Requires multiple PCIe RTTs, min latency 1.6 us

App WQE

NIC

doorbell

NIC

MemCQE

PCIe PCIe

• Load/Store is synchronous remote memory access. CPU accesses network directly.

• No PCIe, No WQE, CQE or doorbell, latency < 0.5 us

App

I/O die I/O die

Mem

①

② ③ ④

⑤

Data
⑥

⑦

⑧

⑨

①
②

③

④



Load/Store is Not a Panacea
Load/Store Read/Write

Programming Sync Async

Granularity Cache line User-specified message size

Latency Low High

Access efficiency of 
large data blocks

Low High

Application
transparency

Application imperceptible, can be used to 
extend local memory, achieving memory 
pooling

The application needs explicit access to remote 
memory; if used for memory expansion, the 
application needs to be modified

Hardware 
requirements

High, requires the NIC to work closely with the 
CPU

Low, the NIC can be in a detached form

Reliability Large blast radius, a node failure will affect all 
nodes using the remote memory of that node;
store instruction fault is difficult to capture

Easy to capture asynchronous remote access 
exceptions through the application, reducing the blast 
radius to the affected application

Cache coherence Depends on whether the hardware supports it, 
but the overhead of hardware supporting 
cache coherence is high at a large scale

Not supported, the software explicitly copies 
between remote and local memory. In the case of 
sharing, it needs to coordinate with distributed locks 
to ensure consistency



GPU Comm.: From Load/Store to Read/Write

ARK: GPU-driven Code Execution for Distributed Deep Learning, NSDI ‘23



Which Semantics to Pick?

Compute at Client

Memory-mapped Load/Store
(CXL, Gen-Z, etc.)

Asynchronous Read/Write
(one-sided RDMA)

Compute at Server
(Home Node of Data)

SmartNIC
Offloading

In-Network 
Computation RPC on CPU

• Load/Store: low overhead per operation, but 
synchronous; may have cache and buffer

• Read/Write: high overhead per operation, but 
each op can transfer a large block, and many 
ops can work in parallel

• Switch (in-network): high throughput but low 
programmability and buffer size

• SmartNIC: high parallelism but high PCIe 
latency and low buffer size

• RPC on CPU: close to memory, easy to 
program but high cost
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Convergence of AI and Cloud Networking

AI Network

Cloud Network



Convergence of AI and Cloud Networking

NVIDIA DATA CENTER PROCESSING UNIT (DPU) ARCHITECTURE, HotChips 2021



Region-scale RDMA for Disaggregated Storage

70% of Azure traffic is RDMA for
disaggregated storage

Empowering Azure Storage with RDMA, NSDI ‘23



Region-scale RDMA for Disaggregated Storage

Empowering Azure Storage with RDMA, NSDI ‘23
RDMA reduces CPU utilization RDMA reduces storage latency

RDMA Benefits



Region-scale RDMA for Disaggregated Storage

• Challenges:
• PFC Storm caused by
malfunctioning NICs and switches
• Interoperability of heterogenous
NICs and switches
• Scaling PFC and congestion
control over long-haul (~100 km)
links between AZs

Empowering Azure Storage with RDMA, NSDI ‘23

• Solutions:
• PFC Watchdog on switches and
SmartNICs to distinguish PFC Storm
from congestion PFCs
• Minimize PFC generation using per-flow E2E 

congestion control, BUT keep PFC to allow fast 
start and lower tail latency 

• Fine-tune DCQCN for NIC inter-op;
Switch – SONiC: unified software stack

• Jointly tune DCQCN params with
switch buffers; sparse ECN marking;
DCQCN does not suffer from RTT
unfairness



RDMA: The Devil is in the Details

Lumina: Understanding the Micro-Behaviors of Hardware Offloaded Network Stacks, SIGCOMM ‘23



Performance Isolation Problem of RDMA NICs

Husky: Understanding RDMA Microarchitecture Resources for Performance Isolation, NSDI ‘23



Empowering Azure Storage with RDMA, NSDI ‘23

Lessons from Azure RDMA Deployment



The Congestion Challenge

Domain-Specific Interconnection Networks in the Era of Domain-Specific AI Supercomputer, APNet ‘23 Keynote



Predictable RDMA Network for AI/HPC

1. Congestion Control
(DCQCN)

2. End-to-end Flow Control
(1RMA)

3. Flow Scheduling
(PIAS)

4. Traffic Engineering
(B4 in WAN, ? in datacenters)



Predictable RDMA Network for AI/HPC

Domain-Specific Interconnection Networks in the Era of Domain-Specific AI Supercomputer, APNet ‘23 Keynote



General-Purpose vs. Domain-Specific

Domain-Specific Interconnection Networks in the Era of Domain-Specific AI Supercomputer, APNet ‘23 Keynote



My View on the Debate

• Programmability and scalability first
• Programmability promotes ecosystem
• Scalability enables a unified architecture for many scenarios
• Identify bottlenecks in real systems before optimizing performance

• Consider GPUs vs. DSAs
• DSAs have higher performance but CUDA has the best ecosystem
• The price of H100 ($30K~$40K) is 15~20x of its manufacturing cost ($2K)



Summary

• Trend 1: Intelligent Network Devices
• SmartNIC: FPGA, ASIC, NP and DPU
• Programmable Switch

• Trend 2: Fast Interconnect
• NVLink and CXL: Direct P2P with Memory Semantics
• Convergence of AI and Cloud Networking

• Where should we put network intelligence?
• The AI era is coming, so everything is going to be smart
• SmartNICs for virtualization, switches for In-Network Telemetry, direct P2P
among xPUs with memory semantics
• Programmability and scalability first



Thanks!


